skip to main content


Title: Testing Group Fairness via Optimal Transport Projections
InProceedings{pmlr-v139-si21a, title = {}, author = {}, booktitle = {}, pages = {9649--9659}, We have developed a statistical testing framework to detect if a given machine learning classifier fails to satisfy a wide range of group fairness notions. Our test is a flexible, interpretable, and statistically rigorous tool for auditing whether exhibited biases are intrinsic to the algorithm or simply due to the randomness in the data. The statistical challenges, which may arise from multiple impact criteria that define group fairness and which are discontinuous on model parameters, are conveniently tackled by projecting the empirical measure to the set of group-fair probability models using optimal transport. This statistic is efficiently computed using linear programming, and its asymptotic distribution is explicitly obtained. The proposed framework can also be used to test for composite fairness hypotheses and fairness with multiple sensitive attributes. The optimal transport testing formulation improves interpretability by characterizing the minimal covariate perturbations that eliminate the bias observed in the audit.  more » « less
Award ID(s):
1915967
NSF-PAR ID:
10344979
Author(s) / Creator(s):
; ; ;
Editor(s):
Meila, Marina and
Date Published:
Journal Name:
Proceedings of the 38th International Conference on Machine Learning
Volume:
139
Issue:
2021
Page Range / eLocation ID:
9649--9659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai, Tonini, and Lin, 2011). In this article, we derive testing and prediction methods for KM regression under the accelerated failure time (AFT) model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer.

     
    more » « less
  2. Abstract

    Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate ap‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on then‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.

     
    more » « less
  3. Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy. 
    more » « less
  4. null (Ed.)
    Ranking evaluation metrics play an important role in information retrieval, providing optimization objectives during development and means of assessment of deployed performance. Recently, fairness of rankings has been recognized as crucial, especially as automated systems are increasingly used for high impact decisions. While numerous fairness metrics have been proposed, a comparative analysis to understand their interrelationships is lacking. Even for fundamental statistical parity metrics which measure group advantage, it remains unclear whether metrics measure the same phenomena, or when one metric may produce different results than another. To address these open questions, we formulate a conceptual framework for analytical comparison of metrics.We prove that under reasonable assumptions, popular metrics in the literature exhibit the same behavior and that optimizing for one optimizes for all. However, our analysis also shows that the metrics vary in the degree of unfairness measured, in particular when one group has a strong majority. Based on this analysis, we design a practical statistical test to identify whether observed data is likely to exhibit predictable group bias. We provide a set of recommendations for practitioners to guide the choice of an appropriate fairness metric. 
    more » « less
  5. We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over k elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problems under (epsilon, delta)-differential privacy. We provide sample optimal algorithms for identity testing problem for all parameter ranges, and the first results for closeness testing. Our closeness testing bounds are optimal in the sparse regime where the number of samples is at most k. Our upper bounds are obtained by privatizing non-private estimators for these problems. The non-private estimators are chosen to have small sensitivity. We propose a general framework to establish lower bounds on the sample complexity of statistical tasks under differential privacy. We show a bound on di erentially private algorithms in terms of a coupling between the two hypothesis classes we aim to test. By carefully constructing chosen priors over the hypothesis classes, and using Le Cam’s two point theorem we provide a general mechanism for proving lower bounds. We believe that the framework can be used to obtain strong lower bounds for other statistical tasks under privacy. 
    more » « less