Contact planning is crucial to the locomotion performance of robots: to properly self-propel forward, it is not only important to determine the sequence of internal shape changes (e.g., body bending and limb shoulder joint oscillation) but also the sequence by which contact is made and broken between the mechanism and its environment. Prior work observed that properly coupling contact patterns and shape changes allows for computationally tractable gait design and efficient gait performance. The state of the art, however, made assumptions, albeit motivated by biological observation, as to how contact and shape changes can be coupled. In this paper, we extend the geometric mechanics (GM) framework to design contact patterns. Specifically, we introduce the concept of “contact space” to the GM framework. By establishing the connection between velocities in shape and position spaces, we can estimate the benefits of each contact pattern change and therefore optimize the sequence of contact patterns. In doing so, we can also analyze how a contact pattern sequence will respond to perturbations. We apply our framework to sidewinding robots and enable (1) effective locomotion direction control and (2) robust locomotion performance as the spatial resolution decreases. We also apply our framework to a hexapod robot with two back-bending joints and show that we can simplify existing hexapod gaits by properly reducing the number of contact state switches (during a gait cycle) without significant loss of locomotion speed. We test our designed gaits with robophysical experiments, and we obtain good agreement between theory and experiments.
more »
« less
Optimizing contact-based assemblies
Modern fabrication methods have greatly simplified manufacturing of complex free-form shapes at an affordable cost, and opened up new possibilities for improving functionality and customization through automatic optimization, shape optimization in particular. However, most existing shape optimization methods focus on single parts. In this work, we focus on supporting shape optimization for assemblies, more specifically, assemblies that are held together by contact and friction. Examples of which include furniture joints, construction set assemblies, certain types of prosthetic devices and many other. To enable this optimization, we present a framework supporting robust and accurate optimization of a number of important functionals, while enforcing constraints essential for assembly functionality: weight, stress, difficulty of putting the assembly together, and how reliably it stays together. Our framework is based on smoothed formulation of elasticity equations with contact, analytically derived shape derivatives, and robust remeshing to enable large changes of shape, and at the same time, maintain accuracy. We demonstrate the improvements it can achieve for a number of computational and experimental examples.
more »
« less
- Award ID(s):
- 1821334
- PAR ID:
- 10344986
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 40
- Issue:
- 6
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In most synthetic self-assembly processes the size of the final structure grows unbound and is only limited by the number of accessible microscopic building blocks. In comparison, biological assemblies can autonomously regulate their size and shape. One mechanism for such self-regulation is based on the chirality of microscopic units. Chirality induces a twisted geometry of building blocks that is incompatible with long-ranged crystalline packing, thereby stopping the assembly’s growth at a given stage. Chiral self-regulating self-assemblies, based on thermodynamic equilibration rather than kinetic trapping, remain an elusive target that has attracted considerable attention. So far studies of chiral self-assembly processes have focused on non-responsive systems, whose equilibrium points are not easily shifted in situ, which limits their versatility and applicability. Here, we demonstrate stimuli-responsive self-regulating self-assembly. This assembly is composed of chiral and magnetically alignable nanorods, where the effective chirality is modulable by balancing chirality-induced twisting with magnet-induced untwisting alignment. Changing the magnetic field intensity, controls the strength of self-regulation, leading to assemblies whose sizes and shapes are rationally controlled. The described size/shape control mechanism is tunable, reversible, robust, and widely applicable, opening up new possibilities for generating biomimetics structures with desirable functions and properties.more » « less
-
This publication contains ABAQUS inp files supporting the publication Numerical study on wave propagation in a row of topologically interlocked tetrahedra in Granular Matter (2023), 25 (1) This study is concerned with the mechanics of wave propagation in a type of architectured, granular, material system. Specifically, we investigate wave propagation in a topologically interlocked material (TIM) system. TIM systems are assemblies of polyhedrons in which individual polyhedrons cannot be removed from the assembly without complete disassembly due to the geometric interlocking of the polyhedrons. The study employs an explicit finite element code to compute phase velocities, amplitude distributions, and wave patterns in a linear assembly of topologically interlocking tetrahedra. Tetrahedra are considered fully 3D linear elastic bodies interacting with neighboring tetrahedra by contact and friction. This publication contains the following inp files for use with the FE code ABAQUS: FullChainMu0V01Linear.inp -- A row of tetrahedra, constant contact stiffness, no friction, impact velocity 1.0 m/s. FullChainMu5V01Linear.inp -- A row of tetrahedra, constant contact stiffness, Coulomb friction with coefficient of friction 0.5, impact velocity 1.0 m/s. ExpAV01.inp -- A row of tetrahedra, variable contact stiffness, no friction, impact velocity 1.0 m/s. ExpBV01.inp -- A row of tetrahedra, variable contact stiffness, no friction, impact velocity 1.0 m/s. PartiallyFused.inp -- A row of tetrahedra with several tetrahedra fused together, constant contact stiffness, no friction, impact velocity 1.0 m/s. PartiallyFusedFric.inp -- A row of tetrahedra with several tetrahedra fused together, constant contact stiffness, Coulomb friction with coefficient of friction 0.5, impact velocity 1.0 m/s.more » « less
-
Additive Manufacturing (AM) provides the advantage of producing complex shapes that are not possible through traditional cutting processes. Along with this line, assembly-based part design in AM creates some opportunities for productivity improvement. This paper proposes an improved optimization algorithm for part separation (OAPS) in assembly-based part design in additive manufacturing. For a given object, previous studies often provide the optimal number of parts resulting from cutting processes and their corresponding orientation to obtain the minimum processing time. During part separation, the cutting plane direction to generate subparts for assembly was often selected randomly in previous studies. The current work addresses the use of random cutting planes for part separation and instead uses the hill climbing optimization technique to generate the cutting planes to separate the parts. The OAPS provides the optimal number of assemblies and the build orientation of the parts for the minimum processing time. Two examples are provided to demonstrate the application of OAPS algorithm.more » « less
-
In recent decades, nucleic acid self-assemblies have emerged as popular nanomaterials due to their programmable and robust assembly, prescribed geometry, and versatile functionality. However, it remains a challenge to purify large quantities of DNA nanostructures or DNA-templated nanocomplexes for various applications. Commonly used purification methods are either limited by a small scale or incompatible with functionalized structures. To address this unmet need, we present a robust and scalable method of purifying DNA nanostructures by Sepharose resin-based size exclusion. The resin column can be manually packed in-house with reusability. The separation is driven by a low-pressure gravity flow in which large DNA nanostructures are eluted first followed by smaller impurities of ssDNA and proteins. We demonstrated the efficiency of the method for purifying DNA origami assemblies and protein-immobilized DNA nanostructures. Compared to routine agarose gel electrophoresis that yields 1 μg or less of purified products, this method can purify ∼100–1000 μg of DNA nanostructures in less than 30 min, with the overall collection yield of 50–70% of crude preparation mixture. The purified nanocomplexes showed more precise activity in evaluating enzyme functions and antibody-triggered activation of complement protein reactions.more » « less
An official website of the United States government

