A strongly nonlinear long-wave approximation is adopted to obtain a high-order model for large-amplitude long internal waves in a two-layer system by assuming the water depth is much smaller than the typical wavelength. When truncated at the first order, the model can be reduced to the regularized strongly nonlinear model of Choiet al.(J. Fluid Mech., vol. 629, 2009, pp. 73–85), which lessens the Kelvin–Helmholtz instability excited by the tangential velocity jump across the interface in the inviscid Miyata–Choi–Camassa (MCC) equations. Using the second-order model, the next-order correction to the internal solitary wave solution of the MCC equations is found and its validity is examined with the Euler solution in terms of the wave profile, the effective wavelength and the velocity profile. It is shown that the correction greatly improves the comparison with the Euler solution for the whole range of wave amplitudes and no further correction is necessary for practical applications. Based on a local stability analysis, the region of stability for the second-order long-wave model is identified in the physical parameter space so that the efficient numerical scheme developed for the first-order model can be used for the second-order model.
more »
« less
High-order strongly nonlinear long wave approximation and solitary wave solution
We consider high-order strongly nonlinear long wave models expanded in a single small parameter measuring the ratio of the water depth to the characteristic wavelength. By examining its dispersion relation, the high-order system for the bottom velocity is found stable to all disturbances at any order of approximation. On the other hand, systems for other velocities can be unstable and even ill-posed, as signified by the unbounded maximum growth. Under the steady assumption, a new third-order solitary wave solution of the Euler equations is obtained using the high-order strongly nonlinear system and is expanded in an amplitude parameter, which is different from that used in weakly nonlinear theory. The third-order solution is shown to well describe various physical quantities induced by a finite-amplitude solitary wave, including the wave profile, horizontal velocity profile, particle velocity at the crest and bottom pressure. For numerical computations, the first- and second-order strongly nonlinear systems for the bottom velocity are considered. It is shown that finite difference schemes are unstable due to truncation errors introduced in approximating high-order spatial derivatives and, therefore, a more accurate spatial discretization scheme is necessary. Using a pseudo-spectral method based on finite Fourier series combined with an iterative scheme for the inversion of a non-local operator, the strongly nonlinear systems are solved numerically for the propagation of a single solitary wave and the head-on collision of two counter-propagating solitary waves of finite amplitudes, and the results are compared with previous laboratory measurements.
more »
« less
- Award ID(s):
- 2108524
- PAR ID:
- 10345095
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 945
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a theoretical and experimental study of the long-standing fluid mechanics problem involving the temporal resolution of a large localised initial disturbance into a sequence of solitary waves. This problem is of fundamental importance in a range of applications, including tsunami and internal ocean wave modelling. This study is performed in the context of the viscous fluid conduit system – the driven, cylindrical, free interface between two miscible Stokes fluids with high viscosity contrast. Owing to buoyancy-induced nonlinear self-steepening balanced by stress-induced interfacial dispersion, the disturbance evolves into a slowly modulated wavetrain and further into a sequence of solitary waves. An extension of Whitham modulation theory, termed the solitary wave resolution method, is used to resolve the fission of an initial disturbance into solitary waves. The developed theory predicts the relationship between the initial disturbance’s profile, the number of emergent solitary waves and their amplitude distribution, quantifying an extension of the well-known soliton resolution conjecture from integrable systems to non-integrable systems that often provide a more accurate modelling of physical systems. The theoretical predictions for the fluid conduit system are confirmed both numerically and experimentally. The number of observed solitary waves is consistently within one to two waves of the prediction, and the amplitude distribution shows remarkable agreement. Universal properties of solitary wave fission in other fluid dynamics problems are identified.more » « less
-
The formation of a recirculating subsurface core in an internal solitary wave (ISW) of depression, shoaling over realistic bathymetry, is explored through fully nonlinear and nonhydrostatic two-dimensional simulations. The computational approach is based on a high-resolution/accuracy deformed spectral multidomain penalty-method flow solver, which employs the recorded bathymetry, background current, and stratification profile in the South China Sea. The flow solver is initialized using a solution of the fully nonlinear Dubreil–Jacotin–Long equation. During shoaling, convective breaking precedes core formation as the rear steepens and the trough decelerates, allowing heavier fluid to plunge forward, forming a trapped core. This core-formation mechanism is attributed to a stretching of a near-surface background vorticity layer. Since the sign of the vorticity is opposite to that generated by the propagating wave, only subsurface recirculating cores can form. The onset of convective breaking is visualized, and the sensitivity of the core properties to changes in the initial wave, near-surface background shear, and bottom slope is quantified. The magnitude of the near-surface vorticity determines the size of the convective-breaking region, and the rapid increase of local bathymetric slope accelerates core formation. If the amplitude of the initial wave is increased, the subsequent convective-breaking region increases in size. The simulations are guided by field data and capture the development of the recirculating subsurface core. The analyzed parameter space constitutes a baseline for future three-dimensional simulations focused on characterizing the turbulent flow engulfed within the convectively unstable ISW.more » « less
-
Abstract Wave front propagation with nontrivial bottom topography is studied within the formalism of hyperbolic long wave models. Evolution of nonsmooth initial data is examined, and, in particular, the splitting of singular points and their short time behavior is described. In the opposite limit of longer times, the local analysis of wave fronts is used to estimate the gradient catastrophe formation and how this is influenced by the topography. The limiting cases when the free surface intersects the bottom boundary, belonging to the so‐called “physical” and “nonphysical” vacuum classes, are examined. Solutions expressed by power series in the spatial variable lead to a hierarchy of ordinary differential equations for the time‐dependent series coefficients, which are shown to reveal basic differences between the two vacuum cases: for nonphysical vacuums, the equations of the hierarchy are recursive and linear past the first two pairs, whereas for physical vacuums, the hierarchy is nonrecursive, fully coupled, and nonlinear. The former case may admit solutions that are free of singularities for nonzero time intervals, whereas the latter is shown to develop nonstandard velocity shocks instantaneously. Polynomial bottom topographies simplify the hierarchy, as they contribute only a finite number of inhomogeneous forcing terms to the equations in the recursion relations. However, we show that truncation to finite‐dimensional systems and polynomial solutions is in general only possible for the case of a quadratic bottom profile. In this case, the system's evolution can reduce to, and is completely described by, a low‐dimensional dynamical system for the time‐dependent coefficients. This system encapsulates all the nonlinear properties of the solution for general power series initial data, and, in particular, governs the loss of regularity in finite times at the dry point. For the special case of parabolic bottom topographies, an exact, self‐similar solution class is introduced and studied to illustrate via closed‐form expressions the general results.more » « less
-
Abstract Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili hierarchy reduction method. They are expressed explicitly by rational functions with both the numerator and denominator being the determinants of even order. Four types of intrinsic structures are recognized according to the number of zero-amplitude points. The first- and second-order rogue wave solutions agree with the solutions obtained so far by the Darboux transformation. In spite of the very complicated solution form compared with the ones of many other integrable equations, the third-order rogue waves exhibit two configurations: either a triangle or a distorted pentagon. Both the types and configurations of the third-order rogue waves are determined by different choices of free parameters. As the nonlinear Schrödinger equation is a limiting case of the SS equation, it is shown that the degeneration of the first-order rogue wave of the SS equation converges to the Peregrine soliton.more » « less
An official website of the United States government

