skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Jansky Very Large Array Detections of CO(1–0) Emission in H i-absorption-selected Galaxies at z ≳ 2
Abstract We report a Karl G. Jansky Very Large Array search for redshifted CO(1–0) emission from three H i -absorption-selected galaxies at z ≈ 2, identified earlier in their CO(3–2) or CO(4–3) emission. We detect CO(1–0) emission from DLA B1228-113 at z ≈ 2.1933 and DLA J0918+1636 at z ≈ 2.5848; these are the first detections of CO(1–0) emission in high- z H i -selected galaxies. We obtain high molecular gas masses, M mol ≈ 10 11 × ( α CO /4.36) M ⊙ , for the two objects with CO(1–0) detections, which are a factor of ≈1.5–2 lower than earlier estimates. We determine the excitation of the mid -J CO rotational levels relative to the J = 1 level, r J 1 , in H i -selected galaxies for the first time, obtaining r 31 = 1.00 ± 0.20 and r 41 = 1.03 ± 0.23 for DLA J0918+1636, and r 31 = 0.86 ± 0.21 for DLA B1228-113. These values are consistent with thermal excitation of the J = 3 and J = 4 levels. The excitation of the J = 3 level in the H i -selected galaxies is similar to that seen in massive main-sequence and submillimeter galaxies at z ≳2, but higher than that in main-sequence galaxies at z ≈ 1.5; the higher excitation of the galaxies at z ≳ 2 is likely to be due to their higher star formation rate (SFR) surface density. We use Hubble Space Telescope Wide Field Camera 3 imaging to detect the rest-frame near-ultraviolet (NUV) emission of DLA B1228-113, obtaining an NUV SFR of 4.44 ± 0.47 M ⊙ yr −1 , significantly lower than that obtained from the total infrared luminosity, indicating significant dust extinction in the z ≈ 2.1933 galaxy.  more » « less
Award ID(s):
2107989 2107990 2107991
PAR ID:
10345116
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
933
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Ly α absorbers (DLAs) at z ≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy at z = 2.4604 using NOEMA, associated with the z = 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of ≈ 56 − 24 + 38 % and ≈ 11 − 9 + 26 %, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the H i –selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 10 10 M ⊙ . This indicates that the highest-metallicity DLAs at z ≈ 2 are associated with the most massive galaxies. The newly identified z ≈ 2.4604 H i –selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 10 10 × ( α CO /4.36) × ( r 31 /0.55) M ⊙ . Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5 σ upper limit of 2.3 M ⊙ yr −1 on the unobscured star formation rate (SFR). The low NUV-based SFR estimate, despite the very high molecular gas mass, indicates that DLA0201+365g either is a very dusty galaxy, or has a molecular gas depletion time that is around 2 orders of magnitude larger than that of star-forming galaxies at similar redshifts. 
    more » « less
  2. Abstract We use the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array to detect CO(1–0), CO(3–2), and rest-frame 349 GHz continuum emission from an Hi-selected galaxy, DLA1020+2733g, atz ≈ 2.3568 in the field of thez= 2.3553 damped Lyαabsorber (DLA) toward QSO J1020+2733. The VLA CO(1–0) detection yields a molecular gas mass of (2.84 ± 0.42) × 1011 × (αCO/4.36)M, the largest ever measured in an Hi-selected galaxy. The DLA metallicity is +0.28 ± 0.16, from the Zniiλ2026 absorption line detected in a Keck Echellette Spectrograph and Imager spectrum. This continues the trend of high-metallicity DLAs being frequently associated with massive galaxies. We obtain a star formation rate (SFR) of ≲400Myr−1from the rest-frame 349 GHz continuum emission and a relatively long molecular gas depletion timescale of ≳0.6 Gyr. The excitation of theJ= 3 rotational level is subthermal, with r 31 L CO ( 3 2 ) / L CO ( 1 0 ) = 0.513 ± 0.081 , suggesting that DLA1020+2733g has a low SFR surface density. The large velocity spread of the CO lines, ≈500 km s−1, and the long molecular gas depletion timescale suggest that DLA1020+2733g is likely to be a cold rotating-disk galaxy. 
    more » « less
  3. Abstract We measure the low- J CO line ratios R 21 ≡ CO (2–1)/CO (1–0), R 32 ≡ CO (3–2)/CO (2–1), and R 31 ≡CO (3–2)/CO (1–0) using whole-disk CO maps of nearby galaxies. We draw CO (2–1) from PHANGS-ALMA, HERACLES, and follow-up IRAM surveys; CO (1–0) from COMING and the Nobeyama CO Atlas of Nearby Spiral Galaxies; and CO (3–2) from the James Clerk Maxwell Telescope Nearby Galaxy Legacy Survey and Atacama Pathfinder Experiment Large APEX Sub-Millimetre Array mapping. All together, this yields 76, 47, and 29 maps of R 21 , R 32 , and R 31 at 20″ ∼ 1.3 kpc resolution, covering 43, 34, and 20 galaxies. Disk galaxies with high stellar mass, log ( M ⋆ / M ⊙ ) = 10.25 – 11 , and star formation rate (SFR) = 1–5 M ⊙ yr −1 , dominate the sample. We find galaxy-integrated mean values and a 16%–84% range of R 21 = 0.65 (0.50–0.83), R 32 = 0.50 (0.23–0.59), and R 31 = 0.31 (0.20–0.42). We identify weak trends relating galaxy-integrated line ratios to properties expected to correlate with excitation, including SFR/ M ⋆ and SFR/ L CO . Within galaxies, we measure central enhancements with respect to the galaxy-averaged value of ∼ 0.18 − 0.14 + 0.09 dex for R 21 , 0.27 − 0.15 + 0.13 dex for R 31 , and 0.08 − 0.09 + 0.11 dex for R 32 . All three line ratios anticorrelate with galactocentric radius and positively correlate with the local SFR surface density and specific SFR, and we provide approximate fits to these relations. The observed ratios can be reasonably reproduced by models with low temperature, moderate opacity, and moderate densities, in good agreement with expectations for the cold interstellar medium. Because the line ratios are expected to anticorrelate with the CO (1–0)-to-H 2 conversion factor, α CO 1 − 0 , these results have general implications for the interpretation of CO emission from galaxies. 
    more » « less
  4. Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxies with 21 cm emission have higher H i masses than typical galaxies with comparable M *. High M HI / M * ratios and high sSFRs in DLA/sub-DLA galaxies with M * < 10 9 M ⊙ suggest these galaxies may be gas-rich because of recent gas accretion rather than inefficient star formation. Our study demonstrates the power of absorption and emission studies of DLA/sub-DLA galaxies for extending galactic evolution studies to previously under-explored regimes of low M * and low SFR. 
    more » « less
  5. Abstract We have used the Atacama Large Millimeter/submillimeter Array to map CO(3–2) emission from a galaxy, DLA-B1228g, associated with the high-metallicity damped Lyαabsorber atz≈ 2.1929 toward the QSO PKS B1228–113. At an angular resolution of ≈0.″32 × 0.″24, DLA-B1228g shows extended CO(3–2) emission with a deconvolved size of ≈0.″78 × 0.″18, i.e., a spatial extent of ≈6.4 kpc. We detect extended stellar emission from DLA-B1228g in a Hubble Space Telescope Wide Field Camera 3 F160W image and find that Hαemission is detected in a Very Large Telescope SINFONI image from only one side of the galaxy. While the clumpy nature of the F160W emission and the offset between the kinematic and physical centers of the CO(3–2) emission are consistent with a merger scenario, this appears unlikely due to the lack of strong Hαemission, the symmetric double-peaked CO(3–2) line profile, the high molecular gas depletion timescale, and the similar velocity dispersions in the two halves of the CO(3–2) image. Kinematic modeling reveals that the CO(3–2) emission is consistent with arising from an axisymmetric rotating disk with an exponential profile, a rotation velocity ofvrot= 328 ± 7 km s−1, and a velocity dispersion ofσv= 62 ± 7 km s−1. The high value of the ratiovrotv, ≈5.3, implies that DLA-B1228g is a rotation-dominated cold disk galaxy, the second case of a high-zHi-absorption-selected galaxy identified with a cold rotating disk. We obtain a dynamical mass ofMdyn= (1.5 ± 0.1) × 1011M, similar to the molecular gas mass of ≈1011Minferred from earlier CO(1–0) studies; this implies that the galaxy is baryon-dominated in its inner regions. 
    more » « less