skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrafast branching in intersystem crossing dynamics revealed by coherent vibrational wavepacket motions in a bimetallic Pt( ii ) complex
Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum( ii ) dimer known to undergo a Pt–Pt bond contraction in the metal–metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1 MMLCT state. The results demonstrated that the 145 cm −1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt–Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck–Condon (FC) state to the 3 MMLCT state was mediated by a triplet ligand-centered ( 3 LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of the Pt–Pt stretching wavepacket motions. Moreover, it was found that the CVWP motion had 110 cm −1 frequency decays with the damping time of ∼0.2 ps, matching the time constant of 0.253 ps, corresponding to a redshift in the SE feature at early times. This observation indicates that the Pt–Pt bond contraction changes the stretching frequency from 110 to 145 cm −1 and stabilizes the 1 MMLCT state relative to the 3 LC state with a ∼0.2 ps time scale. Thus, the ultrafast ISC from the 1 MMLCT to the 3 LC states occurs before the Pt–Pt bond shortening. The findings herein provide insight into understanding the impact of Pt–Pt bond contraction on the ultrafast branching of the 1 MMLCT population into the direct ( 1 MMLCT → 3 MMLCT) and indirect ISC pathways ( 1 MMLCT → 3 LC → 3 MMLCT) in the Pt( ii ) dimer. These results revealed intricate excited state electronic and nuclear motions that could steer the reaction pathways with a level of detail that has not been achieved before.  more » « less
Award ID(s):
1955806 1955795
PAR ID:
10345347
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Faraday Discussions
ISSN:
1359-6640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although vibronic coupling phenomena have been recognized in the excited state dynamics of transition metal complexes, their impact on photoinduced electron transfer (PET) remains largely unexplored. This study investigates coherent wavepacket (CWP) dynamics during PET processes in a covalently linked electron donor–acceptor complex featuring a cyclometalated Pt(II) dimer as the donor and naphthalene diimide (NDI) as the acceptors. Upon photoexciting the Pt(II) dimer electron donor, ultrafast broadband transient absorption spectroscopy revealed direct modulation of NDI radical anion formation through certain CWP motions and correlated temporal evolutions of the amplitudes for these CWPs with the NDI radical anion formation. These results provide clear evidence that the CWP motions are the vibronic coherences coupled to the PET reaction coordinates. Normal mode analysis identified that the CWP motions originate from vibrational modes associated with the dihedral angles and bond lengths between the planes of the cyclometalating ligand and the NDI, the key modes altering their p-interaction, consequently influencing PET dynamics. The findings highlight the pivotal role of vibrations in shaping the favorable trajectories for the efficient PET processes. 
    more » « less
  2. Abstract 2’‐Deoxy‐5‐formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time‐resolved mid‐IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM‐TD‐DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine‐to‐formyl charge‐transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark1nπ* state with a lifetime of ∼3 ps. CT‐induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non‐radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited‐state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands. 
    more » « less
  3. Dinuclear d 8 Pt( ii ) complexes, where two mononuclear square planar Pt( ii ) units are bridged in an “A-frame” geometry, possess photophysical properties characterised by either metal-to-ligand-(MLCT) or metal–metal–ligand-to-ligand charge transfer (MMLCT) transitions determined by the distance between the two Pt( ii ) centres. When using 8-hydroxyquinoline (8HQH) as the bridging ligand to construct novel dinuclear complexes with general formula [C^NPt(μ-8HQ)] 2 , where C^N is either 2-phenylpyridine (1) or 7,8-benzoquinoline (2), triplet ligand-centered ( 3 LC) photophysics results echoing that in a mononuclear model chromophore, [Pt(8HQ) 2 ] (3). The lengthened Pt–Pt distances of 3.255 Å (1) and 3.243 Å (2) results in a lowest energy absorption centred around 480 nm assigned as having mixed LC/MLCT character by TD-DFT, mirroring the visible absorption spectrum of 3. Additionally, 1 and 2 exhibit 3 LC photoluminescence with limited quantum yields (0.008) from broad transitions centred near 680 nm. Photoexcitation of 1–3 leads to an initially prepared excited state that relaxes within 15 ps to a 3 LC excited state centred on the 8HQ bridge, which then persists for several microseconds. All the experimental results correspond well with DFT electronic structure calculations. 
    more » « less
  4. The steady-state and ultrafast to supra-nanosecond excited state dynamics of fac -[Re(NBI-phen)(CO) 3 (L)](PF 6 ) (NBI-phen = 16H-benzo[4′,5′]isoquinolino[2′,1′:1,2]imidazo[4,5- f ][1,10]phenanthrolin-16-one) as well as their respective models of the general molecular formula [Re(phen)(CO) 3 (L)](PF 6 ) (L = PPh 3 and CH 3 CN) has been investigated using transient absorption and time-gated photoluminescence spectroscopy. The NBI-phen containing molecules exhibited enhanced visible light absorption with respect to their models and a rapid formation (<6 ns) of the triplet ligand-centred (LC) excited state of the organic ligand, NBI-phen. These triplet states exhibit an extended excited state lifetime that enable the energized molecules to readily engage in triplet–triplet annihilation photochemistry. 
    more » « less
  5. Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of –COH rocking and –C=C, –C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck–Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique “W”-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump–probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics. 
    more » « less