skip to main content


Title: Fast rupture of the 2009 M w 6.9 Canal de Ballenas earthquake in the Gulf of California dynamically triggers seismicity in California
SUMMARY In the Gulf of California, Mexico, the relative motion across the North America–Pacific boundary is accommodated by a series of marine transform faults and spreading centres. About 40 M> 6 earthquakes have occurred in the region since 1960. On 2009 August 3, an Mw 6.9 earthquake occurred near Canal de Ballenas in the region. The earthquake was a strike-slip event with a shallow hypocentre that is likely close to the seafloor. In contrast to an adjacent M7 earthquake, this earthquake triggered a ground-motion-based earthquake early warning algorithm being tested in southern California (∼600 km away). This observation suggests that the abnormally large ground motions and dynamic strains observed for this earthquake relate to its rupture properties. To investigate this possibility, we image the rupture process and resolve the slip distribution of the event using a P-wave backprojection approach and a teleseismic, finite-fault inversion method. Results from these two independent analyses indicate a relatively simple, unilateral rupture propagation directed along-strike in the northward direction. However, the average rupture speed is estimated around 4 km s−1, suggesting a possible supershear rupture. The supershear speed is also supported by a Rayleigh wave Mach cone analysis, although uncertainties in local velocity structure preclude a definitive conclusion. The Canal de Ballenas earthquake dynamically triggered seismicity at multiple sites in California, with triggering response characteristics varying from location-to-location. For instance, some of the triggered earthquakes in California occurred up to 24 hr later, suggesting that nonlinear triggering mechanisms likely have modulated their occurrence.  more » « less
Award ID(s):
2022441 2022429
NSF-PAR ID:
10345493
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
230
Issue:
1
ISSN:
0956-540X
Page Range / eLocation ID:
528 to 541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The July 2019 Ridgecrest, California, earthquake sequence involved two large events—the M 6.4 foreshock and the M 7.1 mainshock that ruptured a system of intersecting strike-slip faults. We present analysis of space geodetic observations including Synthetic Aperture Radar and Global Navigation Satellite System data, geological field mapping, and seismicity to constrain the subsurface rupture geometry and slip distribution. The data render a complex pattern of faulting with a number of subparallel as well as cross-cutting fault strands that exhibit variations in both strike and dip angles, including a “flower structure” formed by shallow splay faults. Slip inversions are performed using both homogeneous and layered elastic half-space models informed by the local seismic tomography data. The inferred slip distribution suggests a moderate amount of the shallow coseismic slip deficit. The peak moment release occurred in the depth interval of 3–4 km, consistent with results from previous studies of major strike-slip earthquakes, and the depth distribution of seismicity in California. We use the derived slip models to investigate stress transfer and possible triggering relationships between the M 7.1 mainshock and the M 6.4 foreshock, as well as other moderate events that occurred in the vicinity of the M 7.1 hypocenter. Triggering is discouraged for the average strike of the M 7.1 rupture (320°) but encouraged for the initial orientation of the mainshock rupture suggested by the first-motion data (340°). This lends support to a scenario according to which the earthquake rupture nucleated on a small fault that was more optimally oriented with respect to the regional stress and subsequently propagated along the less-favorably oriented pre-existing faults, possibly facilitated by dynamic weakening. The nucleation site of the mainshock experienced positive dynamic Coulomb stress changes that are much larger than the static stress changes, yet the former failed to initiate rupture. 
    more » « less
  2. Tsunami generation from earthquake-induced seafloor deformations has long been recognized as a major hazard to coastal areas. Strike-slip faulting has generally been considered insufficient for triggering large tsunamis, except through the generation of submarine landslides. Herein, we demonstrate that ground motions due to strike-slip earthquakes can contribute to the generation of large tsunamis (>1 m), under rather generic conditions. To this end, we developed a computational framework that integrates models for earthquake rupture dynamics with models of tsunami generation and propagation. The three-dimensional time-dependent vertical and horizontal ground motions from spontaneous dynamic rupture models are used to drive boundary motions in the tsunami model. Our results suggest that supershear ruptures propagating along strike-slip faults, traversing narrow and shallow bays, are prime candidates for tsunami generation. We show that dynamic focusing and the large horizontal displacements, characteristic of strike-slip earthquakes on long faults, are critical drivers for the tsunami hazard. These findings point to intrinsic mechanisms for sizable tsunami generation by strike-slip faulting, which do not require complex seismic sources, landslides, or complicated bathymetry. Furthermore, our model identifies three distinct phases in the tsunamic motion, an instantaneous dynamic phase, a lagging coseismic phase, and a postseismic phase, each of which may affect coastal areas differently. We conclude that near-source tsunami hazards and risk from strike-slip faulting need to be re-evaluated.

     
    more » « less
  3. SUMMARY Hazardous tsunamis are known to be generated predominantly at subduction zones. However, the 2018 Mw 7.5 Palu (Indonesia) earthquake on a strike-slip fault generated a tsunami that devastated the city of Palu. The mechanism by which this tsunami originated from such an earthquake is being debated. Here we present near-field ground motion (GPS) data confirming that the earthquake attained supershear speed, i.e. a rupture speed greater than the shear wave speed of the host medium. We subsequently study the effect of this supershear rupture on tsunami generation by coupling the ground motion to a 1-D non-linear shallow-water wave model accounting for both time-dependent bathymetric displacement and velocity. With the local bathymetric profile of Palu bay around a tidal station, our simulations reproduce the tsunami arrival and motions observed by CCTV cameras. We conclude that Mach (shock) fronts, generated by the supershear speed, interacted with the bathymetry and contributed to the tsunami. 
    more » « less
  4. Abstract

    Earthquakes can be dynamically triggered by the passing waves of other distant events. The frequent occurrence of dynamic triggering offers tangible hope in revealing earthquake nucleation processes. However, the physical mechanisms behind earthquake dynamic triggering have remained unclear, and contributions of competing hypotheses are challenging to isolate with individual case studies. To gain a systematic understanding of the spatiotemporal patterns of dynamic triggering, we investigate the phenomenon in southern California from 2008 to 2017. We use the Quake Template Matching catalog and an approach that does not assume an earthquake occurrence distribution. We develop a new set of statistics to examine the significance of seismicity‐rate changes as well as moment‐release changes. Our results show that up to 70% of 1,388 globalM ≥ 6 events may have triggered earthquakes in southern California. The triggered seismicity often occurred several hours after the passing seismic waves. The Salton Sea Geothermal Field, San Jacinto fault, and Coso Geothermal Field are particularly prone to triggering. Although adjacent fault segments can be triggered by the same earthquakes, the majority of triggered earthquakes seem to be uncorrelated, suggesting that the process is primarily governed by local conditions. Further, the occurrence of dynamic triggering does not seem to correlate with ground motion (e.g., peak ground velocity) at the triggered sites. These observations indicate that nonlinear processes may have primarily regulated the dynamic triggering cases.

     
    more » « less
  5. Abstract

    We derive new, 3D, isotropic models of seismic compressional and shear wavespeeds, Vp and Vs, respectively, their ratio, Vp/Vs, and a catalog of relocated earthquakes for Southern California from more than 10 million P‐ and S‐wave arrivals associated with over 0.3 million earthquakes that occurred between 2000 and 2020. We augment high‐quality analyst‐reviewed phase arrival picks from the Southern California Earthquake Data Center with S‐wave arrival picks obtained with an automated algorithm, and we derive new wavespeed models via traveltime tomography formulated using Poisson‐Voronoi cells (Fang et al., 2020,https://doi.org/10.1785/0220190141). The results contribute to improved regional wavespeed models, particularly the Vp/Vs model, and absolute event locations. The obtained models correlate well with regional geological features and yield more accurate synthetic waveforms than other regional models do for waves with periods shorter than 5 s in much of the modeled region. The derived event catalog exhibits tighter spatial clustering than the standard regional catalog, thereby helping to characterize subsurface features of major faults. The regional 1D averaged Vp/Vs ratio shows high values at shallow depths, decreases to a minimum at about 10 km, then increases again at greater depths below 15 km. Deep seismicity correlates well with regions of Vp/Vs ratio lower than 1.75, which may indicate an increased brittle‐to‐ductile transition depth with an important influence on crustal mechanics. The new wavespeed models and seismic catalog can be useful for various studies including analyses of seismicity patterns and simulations of crustal deformation and ground motion.

     
    more » « less