Socio-ecological systems thinking (SEST), is an interdisciplinary science branch that views natural systems and societal systems as one overall system. To support students in building SEST, we designed a 10-week, place-based energy literacy unit where 6th-grade students investigated energy flow between natural systems and their school building. Students developed systems models throughout the unit that they used to propose energy flow relationships between large scale system components and to articulate causal mechanisms that lead to overall system behavior. We analyzed their pre/mid/post-systems models to elucidate their trajectories in discerning system behavior. Findings suggest that students improved in proposing energy flow relationships and causal mechanisms for either the social or natural systems but did not view them as one overall system.
more »
« less
Exploring 6th-Grade Students Model-Based Reasoning about Energy Flow Between Societal and Earth Systems.
While there is an extensive literature base on the energy ideas students hold, there are few studies that examine how elementary students use scientific modeling to conceptualize the interrelationships between societal and Earth systems or how students consider the ways that societal energy systems interact with natural energy systems. This is exploratory project is situated in this space. We explored how 6th-grade students’ (aged 11 – 12) conceptualize energy flow within and across their school building and the surrounding environment within their models. Here, we report our baseline findings the students held at the start of 6th-grade prior to experiencing any energy curriculum asking how 6th-grade students models conceptualize energy flow between their school building and the surrounding environment in their models. We worked with five 6th-grade teachers from the same school district within a small Midwestern city. We collected and analyzed the data quantitatively and qualitatively. Findings highlight the students’ ideas about energy flow which includes viewing energy used in human systems as separate from energy in natural systems (such as a food chain).
more »
« less
- Award ID(s):
- 2009127
- PAR ID:
- 10345585
- Date Published:
- Journal Name:
- National Association of Research in Science Teaching (NARST)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This middle school STEM unit called Energy in Your Environment (EYE) was co-created by middle school science teachers, architectural studies, and science education faculty with the goal of improving students’ energy literacy and energy conservation knowledge. The unit fosters place-based education by using the school building to enhance systems thinking about energy consumption and flow between the building and surrounding environment. Within the unit, students explore the role of electrical, thermal, and light energy in their school building and consider how building features (such as windows, lighting, and insulation) impact energy flow and conservation. Students use their energy systems knowledge to design and build a desk-top one-room energy efficient building using simple materials to explain how and why their design impacts energy flow. Five teachers implemented the unit with over 200 students. The growth from pre- to post-measurements was statistically significant for students energy flow knowledge and tracing the path of energy (F(1, 209) = 3118.3, p = 0.001). In our presentation, we will provide an overview of the unit, our student learning data, and result summary.more » « less
-
This study explores how the interplay between data analysis and model design shifts 6th-grade students' understanding of diffusion from simple to sophisticated mechanistic reasoning and from non-canonical to canonical ideas about diffusion. Using mixed-methods qualitative analysis, we determine students' mechanistic reasoning and ideas about diffusion at five different points in a curricular sequence using a new tool for computational modeling called MoDa. With this data, we present a framework for the relationship between students' developing mechanistic reasoning and their canonical understanding, suggesting that they develop independently. Further, we illustrate how the computational modeling environment, MoDa, used in this study pushed students' mechanistic reasoning toward sophistication. Moreover, in allowing them to explore non-canonical mechanisms, MoDa supported their convergence on canonical scientific ideas about diffusion.more » « less
-
Barriers to broadening participation in engineering to rural and Appalachian youth include misalignment with family and community values, lack of opportunities, and community misperceptions of engineering. While single interventions are unlikely to stimulate change in these areas, more sustainable interventions that are co-designed with local relevance appear promising. Through our NSF ITEST project, we test the waters of this intervention model through partnership with school systems and engineering industry to implement a series of engineering-themed, standards-aligned lessons for the middle school science classroom. Our mixed methods approach includes collection of interview and survey data from administrators, teachers, engineers, and university affiliates as well as observation and student data from the classroom. We have utilized theory from learning science and organizational collaboration to structure and inform our analysis and explore the impact of our project. The research is guided by the following questions: RQ 1: How do participants conceptualize engineering careers? How and why do such perceptions shift throughout the project? RQ 2: What elements of the targeted intervention affect student motivation towards engineering careers specifically with regard to developing competencies and ability beliefs regarding engineering? RQ 3: How can strategic collaboration between K12 and industry promote a shift in teacher’s conceptions of engineers and increased self-efficacy in building and delivering engineering curriculum? RQ 4: How do stakeholder characteristics, perceptions, and dynamics affect the likelihood of sustainability in strategic collaborations between K12 and industry stakeholders? How do prevailing institutional and collaborative conditions mediate sustainability? In year one, we involved nine 6th grade teachers, three engineering companies, and over 500 students. In year two, we expanded to include 7th grade teachers in our partner schools and the new students moving up to 6th grade. Lessons aligned with students' everyday experiences and connected to industry. For example, students created bouncy balls and tested their effectiveness on materials produced from partner manufacturing facilities. From preliminary analysis of data collected in the first two years of the project (e.g, the Draw an Engineer Test and teacher interviews), we have begun to see evidence of positive student and teacher impact. Additionally, our application of collaborative theory to the investigation of stakeholder perceptions of the project has revealed implications for partnering with school systems and engineering industry. For example, key individuals at each organization may serve as important conduits for program communication and collaborative work.more » « less
-
This paper explores how MoDa, an integrated computational modeling and data environment, enabled students to express their ideas about diffusion and shift them toward canonical ideas. Drawing on data from an 8-day unit with two 6th-grade science classes, we analyze students' utterances in presentations, drawings, and written responses to document their diverse ideas about diffusion We present three case studies to illustrate how engaging with computational modeling in MoDa and the unit around it enabled students to shift from non-canonical ideas towards more canonical explanations of diffusion. In particular, we identify three factors that helped in shifting students’ ideas: the availability of code blocks to represent a diverse range of ideas including non-canonical ones, consistent access to video data of the phenomenon, and model presentations to the whole class. The paper illustrates how a computational modeling tool and curriculum can make students' diverse ideas visible and shift them toward canonical explanations.more » « less