skip to main content


Title: Monitoring the SNS basement neutron background with the MARS detector
Abstract We present the analysis and results of the first datasetcollected with the MARS neutron detectordeployed at the Oak Ridge NationalLaboratory Spallation Neutron Source (SNS) for the purpose ofmonitoring and characterizing the beam-related neutron (BRN) backgroundfor the COHERENT collaboration. MARS was positionednext to the COH-CsI coherent elastic neutrino-nucleus scattering detectorin the SNS basement corridor. This is the basement location ofclosest proximity to the SNS target and thus, of highest neutrino flux,but it is also well shielded from the BRN flux by infill concreteand gravel. These data show the detector registered roughly one BRN per day.Using MARS' measured detection efficiency, the incomingBRN flux is estimated to be 1.20 ± 0.56 neutrons/m^2/MWhfor neutron energies above ∼3.5 MeV and up to a few tens of MeV.We compare our results with previous BRN measurements in the SNS basement corridorreported by other neutron detectors.  more » « less
Award ID(s):
1913789 2013205 1920001
NSF-PAR ID:
10345691
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
17
Issue:
03
ISSN:
1748-0221
Page Range / eLocation ID:
P03021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present results of several measurements of CsI[Na] scintillation response to 3–60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region. 
    more » « less
  2. We report the first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer CEvNS over the background-only null hypothesis with greater than 3σ significance. The measured cross section, averaged over the incident neutrino flux, is (2.2±0.7)×10−39  cm2—consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the CEvNS process and provides improved constraints on nonstandard neutrino interactions. 
    more » « less
  3. A bstract Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino non-standard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering. 
    more » « less
  4. Abstract

    The futureRicochetexperiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, theRicochetCollaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present theRicochetneutron background characterization using$$^3$$3He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to theRicochetGeant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the futureRicochetexperiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness of the muon veto, we expect a total nuclear recoil background rate between 44 ± 3 and 9 ± 2 events/day/kg in the CENNS region of interest, i.e. between 50 eV and 1 keV. We therefore found that theRicochetexperiment should reach a statistical significance of 4.6 to 13.6 $$\sigma $$σfor the detection of CENNS after one reactor cycle, when only the limiting neutron background is considered.

     
    more » « less
  5. ABSTRACT The neutrino-driven wind from proto-neutron stars is a proposed site for r-process nucleosynthesis, although most previous work has found that a wind heated only by neutrinos cannot produce the third r-process peak. However, several groups have noted that introducing a secondary heating source within the wind can change the hydrodynamic conditions sufficiently for a strong r-process to proceed. One possible secondary heating source is gravito-acoustic waves, generated by convection inside the proto-neutron star. As these waves propagate into the wind, they can both accelerate the wind and shock and deposit energy into the wind. Additionally, the acceleration of the wind by these waves can reduce the total number of neutrino captures and thereby reduce the final electron fraction of the wind. In neutron rich conditions, all of these effects can make conditions more favourable for r-process nucleosynthesis. Here, we present a systematic investigation of the impact of these convection-generated gravito-acoustic waves within the wind on potential nucleosynthesis. We find that wave effects in the wind can generate conditions favourable for a strong r-process, even when the energy flux in the waves is a factor of 10−4 smaller than the total neutrino energy flux and the wind is marginally neutron rich. Nevertheless, this depends strongly on the radius at which the waves become non-linear and form shocks. We also find that both entropy production after shock formation and the acceleration of the wind due to stresses produced by the waves prior to shock formation impact the structure and nucleosynthesis of these winds. 
    more » « less