In environments with prodigious numbers of neutrinos, such as core-collapse supernovae, neutron star mergers, or the early Universe, neutrino-neutrino interactions are dynamically significant. They can dominate neutrino flavor evolution and force it to be nonlinear, causing collective neutrino oscillations. Such collective oscillations have been studied numerically, for systems with up to millions of neutrinos, using mean-field or one-particle effective approximations. However, such a system of interacting neutrinos is a quantum many-body system, wherein quantum correlations could play a significant role in the flavor evolution—thereby motivating the exploration of many-body treatments that follow the time evolution of these correlations. In many-body flavor evolution calculations with two neutrino flavors, the emergence of spectral splits in the neutrino energy distributions has been found to be correlated with the degree of quantum entanglement across the spectrum. In this work, for the first time, we investigate the emergence of spectral splits in the three-flavor many-body collective neutrino oscillations. We find that the emergence of spectral splits resembles the number and location found in the mean-field approximation but not in the width. Moreover, unlike in the two-flavor many-body calculations, we find that additional degrees of freedom make it more difficult to establish a correlation between the location of the spectral splits and the degree of quantum entanglement across the neutrino energy spectrum. The observation from the two-flavor case, that neutrinos nearest to the spectral split frequency exhibit the highest level of entanglement, is more difficult to ascertain in the three-flavor case because of the presence of multiple spectral splits across different pairwise combinations of flavor and/or mass states. Published by the American Physical Society2025 
                        more » 
                        « less   
                    
                            
                            Collective Neutrino Oscillations and Heavy-element Nucleosynthesis in Supernovae: Exploring Potential Effects of Many-body Neutrino Correlations
                        
                    
    
            Abstract In high-energy astrophysical processes involving compact objects, such as core-collapse supernovae or binary neutron star mergers, neutrinos play an important role in the synthesis of nuclides. Neutrinos in these environments can experience collective flavor oscillations driven by neutrino–neutrino interactions, including coherent forward scattering and incoherent (collisional) effects. Recently, there has been interest in exploring potential novel behaviors in collective oscillations of neutrinos by going beyond the one-particle effective or “mean-field” treatments. Here, we seek to explore implications of collective neutrino oscillations, in the mean-field treatment and beyond, for the nucleosynthesis yields in supernova environments with different astrophysical conditions and neutrino inputs. We find that collective oscillations can impact the operation of theνp-process andr-process nucleosynthesis in supernovae. The potential impact is particularly strong in high-entropy, proton-rich conditions, where we find that neutrino interactions can nudge an initialνp-process neutron-rich, resulting in a unique combination of proton-rich low-mass nuclei as well as neutron-rich high-mass nuclei. We describe this neutrino-induced neutron-capture process as the “νi-process.” In addition, nontrivial quantum correlations among neutrinos, if present significantly, could lead to different nuclide yields compared to the corresponding mean-field oscillation treatments, by virtue of modifying the evolution of the relevant one-body neutrino observables. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10510174
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 967
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 146
- Size(s):
- Article No. 146
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars.more » « less
- 
            Abstract The elemental abundances between strontium and silver (Z= 38–47) observed in the atmospheres of very metal-poor stars in the Galaxy may contain the fingerprint of the weakr-process andνp-process occurring in early core-collapse supernovae explosions. In this work, we combine various astrophysical conditions based on a steady-state model to cover the richness of the supernova ejecta in terms of entropy, expansion timescale, and electron fraction. The calculated abundances based on different combinations of conditions are compared with stellar observations, with the aim of constraining supernova ejecta conditions. We find that some conditions of the neutrino-driven outflows consistently reproduce the observed abundances of our sample. In addition, from the successful combinations, the neutron-rich trajectories better reproduce the observed abundances of Sr–Zr (Z= 38–40), while the proton-rich ones, Mo–Pd (Z= 42–47).more » « less
- 
            Lamia, L.; Pizzone, R.G.; Rapisarda, G.G.; Sergi, M.L. (Ed.)Nucleosynthesis in the ν p-process occurs in regions of slightly proton-rich nuclei in the neutrino-driven wind of core-collapse supernovae. The process proceeds via a sequence of (p, γ ) and (n,p) reactions, and depending on the conditions, may produce elements between Ni and Sn. Recent studies show that a few key (n,p) reactions regulate the efficiency of the neutrino-p process ( ν p-process). We performed a study of one of such (n,p) reactions via the measurement of the reverse (p,n) in inverse kinematics with SECAR at NSCL/FRIB.Such proton-induced reaction measurements are particularly challenging, as the recoils and the unreacted projectiles have nearly identical masses. An appropriate separation level can be achieved with SECAR, and along with the incoincidence detection of neutrons these measurements become attainable. The preparation of the SECAR system for accommodating its first (p,n) reaction measurement, including the development of alternative ion beam optics, and the setup of the in-coincidence neutron detection, along with discussion on preliminary results from the p( 58 Fe,n) 58 Co reaction measurement are presented and discussed.more » « less
- 
            Abstract Neutrinos are copiously emitted by neutron star mergers, due to the high temperatures reached by dense matter during the merger and its aftermath. Neutrinos influence the merger dynamics and shape the properties of the ejecta, including the resultingr-process nucleosynthesis and kilonova emission. In this work, we analyse neutrino emission from a large sample of binary neutron star merger simulations in Numerical Relativity, covering a broad range of initial masses, nuclear equation of state and viscosity treatments. We extract neutrino luminosities and mean energies, and compute quantities of interest such as the peak values, peak broadnesses, time averages and decrease time scales. We provide a systematic description of such quantities, including their dependence on the initial parameters of the system. We find that for equal-mass systems the total neutrino luminosity (several$$10^{53}{\hbox {erg}~{\hbox {s}}^{-1}}$$ ) decreases as the reduced tidal deformability increases, as a consequence of the less violent merger dynamics. Similarly, tidal disruption in asymmetric mergers leads to systematically smaller luminosities. Peak luminosities can be twice as large as the average ones. Electron antineutrino luminosities dominate (initially by a factor of 2-3) over electron neutrino ones, while electron neutrinos and heavy flavour neutrinos have similar luminosities. Mean energies are nearly constant in time and independent on the binary parameters. Their values reflect the different decoupling temperature inside the merger remnant. Despite present uncertainties in neutrino modelling, our results provide a broad and physically grounded characterisation of neutrino emission, and they can serve as a reference point to develop more sophisticated neutrino transport schemes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
