- PAR ID:
- 10345691
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Instrumentation
- Volume:
- 17
- Issue:
- 03
- ISSN:
- 1748-0221
- Page Range / eLocation ID:
- P03021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present results of several measurements of CsI[Na] scintillation response to 3–60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region.more » « less
-
We report the first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer CEvNS over the background-only null hypothesis with greater than 3σ significance. The measured cross section, averaged over the incident neutrino flux, is (2.2±0.7)×10−39 cm2—consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the CEvNS process and provides improved constraints on nonstandard neutrino interactions.more » « less
-
A bstract Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino non-standard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering.more » « less
-
Abstract In high-energy astrophysical processes involving compact objects, such as core-collapse supernovae or binary neutron star mergers, neutrinos play an important role in the synthesis of nuclides. Neutrinos in these environments can experience collective flavor oscillations driven by neutrino–neutrino interactions, including coherent forward scattering and incoherent (collisional) effects. Recently, there has been interest in exploring potential novel behaviors in collective oscillations of neutrinos by going beyond the one-particle effective or “mean-field” treatments. Here, we seek to explore implications of collective neutrino oscillations, in the mean-field treatment and beyond, for the nucleosynthesis yields in supernova environments with different astrophysical conditions and neutrino inputs. We find that collective oscillations can impact the operation of the
ν p -process andr -process nucleosynthesis in supernovae. The potential impact is particularly strong in high-entropy, proton-rich conditions, where we find that neutrino interactions can nudge an initialν p -process neutron-rich, resulting in a unique combination of proton-rich low-mass nuclei as well as neutron-rich high-mass nuclei. We describe this neutrino-induced neutron-capture process as the “ν i -process.” In addition, nontrivial quantum correlations among neutrinos, if present significantly, could lead to different nuclide yields compared to the corresponding mean-field oscillation treatments, by virtue of modifying the evolution of the relevant one-body neutrino observables. -
ABSTRACT The neutrino-driven wind from proto-neutron stars is a proposed site for r-process nucleosynthesis, although most previous work has found that a wind heated only by neutrinos cannot produce the third r-process peak. However, several groups have noted that introducing a secondary heating source within the wind can change the hydrodynamic conditions sufficiently for a strong r-process to proceed. One possible secondary heating source is gravito-acoustic waves, generated by convection inside the proto-neutron star. As these waves propagate into the wind, they can both accelerate the wind and shock and deposit energy into the wind. Additionally, the acceleration of the wind by these waves can reduce the total number of neutrino captures and thereby reduce the final electron fraction of the wind. In neutron rich conditions, all of these effects can make conditions more favourable for r-process nucleosynthesis. Here, we present a systematic investigation of the impact of these convection-generated gravito-acoustic waves within the wind on potential nucleosynthesis. We find that wave effects in the wind can generate conditions favourable for a strong r-process, even when the energy flux in the waves is a factor of 10−4 smaller than the total neutrino energy flux and the wind is marginally neutron rich. Nevertheless, this depends strongly on the radius at which the waves become non-linear and form shocks. We also find that both entropy production after shock formation and the acceleration of the wind due to stresses produced by the waves prior to shock formation impact the structure and nucleosynthesis of these winds.more » « less