In this study, different hatch spacings were used to fabricate single layer and multiple layers, and its effect on porosity was investigated by using microcomputed tomography. The combination of laser power (100 W, 150 W, 175 W, and 195W) and scan speeds (600 mm/s, 800 mm/s, 1000 mm/s and 1200 mm/s) which resulted in the least number of pores were selected from the previous single-track experiment. Six levels of hatch spacings were selected based on the track width to form single and multiple layers: 60%, 70%, 80%, 90%, 120% and 150% of track widths. For the multilayer build, the variation in keyhole porosity within the given window of parameters were found to be attributed to the variation in the hatch spacing. In general, the pore number decreased with increase in hatch spacing from 60% to 90% but increased when hatch spacing further increased from 90% to 120%.
more »
« less
An Investigation Into Multi-Track Deposition in Laser Powder-Bed Fusion: Transient Regions Analysis and Scan Length Effects
Laser powder bed fusion (L-PBF) additive manufacturing has been used to fabricate complex-shaped structures, which often consist of fine features. Due to transient process phenomena, there are differences in terms of the melt pool formation and the surface morphology depending upon the feature area and scan parameters. This study investigates the scan length effect on the surface morphology and the presence of transient length and width that may have a significant effect as the layer addition continues. For this purpose, four scan lengths (0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm) are used to fabricate six tracks with back-and-forth scanning. A full factorial design of experiments is used to form multi-track depositions with three levels of power (125 W, 160 W, and 195 W), two levels of scan speed (550 mm/s and 1000 mm/s), and four levels of hatch spacing (80 μm, 100 μm, 120 μm, and 140 μm). A white light interferometer is used to acquire the surface data, and MATLAB is used for surface topographical analysis. The results indicated that the scan length has a significant effect on the surface characteristics. The average height of multi-track deposits increases with the decrease of the scan length. Moreover, the transient length and width can be approximated based on the height variation along both the scan and transverse directions, respectively.
more »
« less
- Award ID(s):
- 1921263
- PAR ID:
- 10345695
- Date Published:
- Journal Name:
- Proceedings of the ASME 2022 17th International Manufacturing Science and Engineering Conference, MSEC2022-85746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This work presents the experimental characterization of pool boiling heat transfer enhancement on cylindrical tubes with circumferential micro-channels using saturated water at atmospheric pressure as the working fluid. Three engineered copper tubes with 300 μm, 600 μm and 900 μm fin width and a fixed 400 μm channel width with 410 μm channel depth were machined using CNC. To compare the boiling enhancement on engineered tubes, one plain copper tube was used as the reference heater. The active heating area on the cylindrical tubes had a dimension of 9.5 mm outer diameter and 10.5 mm length. A custom-built cylindrical heater was designed using a nichrome wire coil of 30 AWG with a resistance of 19.57 Ω/inch of coil to provide joule heating to the cylindrical tubes. The electrical wire was insulated from the copper heater using a thin layer of alumina paste. The saturated pool boiling tests up to critical heat flux (CHF) were conducted at atmospheric pressure. While an approximate CHF of ∼70 W/cm2 was achieved for the plain copper tube, the cylindrical tube with microchannel geometry showed a CHF range of 131–144 W/cm2 that corresponds to 87%–100% enhancement as compared to plain cylindrical tube.more » « less
-
The effect of nozzle surface features on the overall atomization behavior of a liquid jet is analyzed in the present computational work by adopting three representative geometries, namely a single X-ray tomography scan of the Engine Combustion Network’s Spray A nozzle (Unprocessed), a spline reconstruction of multiple scans (Educated), and a purely external flow configuration. The latter configuration is often used in fundamental jet atomization studies. Numerically, the two-phase flow is solved based on algebraic volume-of-fluid methodology utilizing the OpenFoam solver, interFoam. Quantitative characterization of the surface features concerning the first two geometries reveals that while both of them have similar levels of cylindrical asymmetries, the nozzle configuration pertaining to the Unprocessed geometry has much larger surface features along the streamwise direction than the Educated geometry. This produces for the Unprocessed configuration a much larger degree of non-axial velocity components in the flow exiting the orifice and also a more pronounced disturbance of the liquid surface in the first few diameters downstream of the nozzle orifice. Furthermore, this heightened level of surface destabilization generates a much shorter intact liquid core length, that is, it produces faster primary atomization. The surprising aspect of this finding is that the differences between the Unprocessed and Educated geometries are of [Formula: see text](1) μm, and they are able to produce [Formula: see text](1) mm effects in the intact liquid core length. In spite of more pronounced atomization for the Unprocessed geometry, the magnitude of the turbulent liquid kinetic energy is roughly the same as the Educated geometry. This highlights the important role of mean field quantities, in particular, non-axial velocity components, in precipitating primary atomization. At the other end of the spectrum, the external-only configuration has the mildest level of surface disturbances in the near field resulting in the longest intact liquid core length.more » « less
-
In this study we characterized the process–structure interactions in melt extrusion-based 3D bioplotting of polycaprolactone (PCL) and developed predictive models to enable the efficient design and processing of scaffolds for tissue engineering applications. First, the effects of pneumatic extrusion pressure (0.3, 0.4, 0.5, 0.6 N/mm2), nozzle speed (0.1, 0.4, 1.0, 1.4 mm/s), strand lay orientation (0°, 45°, 90°, 135°), and strand length (10, 20, 30 mm) on the strand width were investigated and a regression model was developed to map strand width to the two significant parameters (extrusion pressure and nozzle speed; p < 0.05). Then, proliferation of NIH/3T3 fibroblast cells in scaffolds with two different stand widths fabricated with different combinations of the two significant parameters was assessed over 7 days, which showed that the strand width had a significant effect on proliferation (p < 0.05). The effect of strand lay orientation (0° and 90°) on tensile properties of non-porous PCL specimens was determined and was found to be significantly higher for specimens with 0° lay orientation (p < 0.05). Finally, these data were used to develop and experimentally validate a finite element model for a porous PCL specimen with 1:1 ratio of inter-strand spacing to strand width.more » « less
-
Additive manufacturing (AM) as a disruptive technique has offered great potential to design and fabricate many metallic components for aerospace, medical, nuclear, and energy applications where parts have complex geometry. However, a limited number of materials suitable for the AM process is one of the shortcomings of this technique, in particular laser AM of copper (Cu) is challenging due to its high thermal conductivity and optical reflectivity, which requires higher heat input to melt powders. Fabrication of composites using AM is also very challenging and not easily achievable using the current powder bed technologies. Here, the feasibility to fabricate pure copper and copper-carbon nanotube (Cu-CNT) composites was investigated using laser powder bed fusion additive manufacturing (LPBF-AM), and 10 × 10 × 10 mm3 cubes of Cu and Cu-CNTs were made by applying a Design of Experiment (DoE) varying three parameters: laser power, laser speed, and hatch spacing at three levels. For both Cu and Cu-CNT samples, relative density above 90% and 80% were achieved, respectively. Density measurement was carried out three times for each sample, and the error was found to be less than 0.1%. Roughness measurement was performed on a 5 mm length of the sample to obtain statistically significant results. As-built Cu showed average surface roughness (Ra) below 20 µm; however, the surface of AM Cu-CNT samples showed roughness values as large as 1 mm. Due to its porous structure, the as-built Cu showed thermal conductivity of ~108 W/m·K and electrical conductivity of ~20% IACS (International Annealed Copper Standard) at room temperature, ~70% and ~80% lower than those of conventionally fabricated bulk Cu. Thermal conductivity and electrical conductivity were ~85 W/m·K and ~10% IACS for as-built Cu-CNT composites at room temperature. As-built Cu-CNTs showed higher thermal conductivity as compared to as-built Cu at a temperature range from 373 K to 873 K. Because of their large surface area, light weight, and large energy absorbing behavior, porous Cu and Cu-CNT materials can be used in electrodes, catalysts and their carriers, capacitors, heat exchangers, and heat and impact absorption.more » « less
An official website of the United States government

