skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Janus and RG-flow interfaces in three-dimensional gauged supergravity
A bstract In this paper, we construct Janus-type solutions of three-dimensional gauged supergravity with sixteen supersymmetries. We find solutions which correspond to interfaces between the same CFT on both sides, as well as RG-flow interfaces between CFTs with different numbers of supersymmetries and central charges. The solutions are obtained by solving the flow equations derived from the supersymmetry variations, and they preserve some fraction of the supersymmetries of the AdS 3 vacua.  more » « less
Award ID(s):
1914412
PAR ID:
10345730
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we find solutions of minimal [Formula: see text] gauged supergravity corresponding to Janus and RG-flow interfaces. We use holography to calculate symmetric and interface entanglement entropy as well as reflection coefficients and confirm that a recently proposed1inequality involving these quantities is satisfied for the solutions found here. 
    more » « less
  2. A bstract In this paper, we continue the study of Janus and RG-flow interfaces in three dimensional supergravity continuing the work presented in [1]. We consider $$ \mathcal{N} $$ N = 8 gauged supergravity theories which have a $$ \mathcal{N} $$ N = (4 , 4) AdS 3 vacuum with D 1 (2 , 1; α ) × D 1 (2 , 1; α ) symmetry for general α . We derive the BPS flow equations and find numerical solutions. Some holographic quantities such as the entanglement entropy are calculated. 
    more » « less
  3. Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). 
    more » « less
  4. Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere. 
    more » « less
  5. The fouling of submerged surfaces detrimentally alters stratum properties. Inorganic and organic foulers alike attach to and accumulate on surfaces when the complex interaction between numerous variables governing attachment and colonization is favourable. Unlike naturally evolved solutions, industrial methods of repellence carry adverse environmental impacts. Mammal fur demonstrates high resistance to fouling; however, our understanding of the intricacies of such performance remains limited. Here, we show that the passive trait of fur to dynamically respond to an external flow field dramatically improves its anti-fouling performance over that of fibres rigidly fixed at both ends. We have previously discovered a statistically significant correlation between a group of flow- and stratum-related properties, and the quantified anti-fouling performance of immobile filaments. In this work, we improve the correlation by considering an additional physical factor, the ability of hair to flex. Our work establishes a parametric framework for the design of passive anti-fouling filamentous structures and invites other disciplines to contribute to the investigation of the anti-fouling prowess of mammalian interfaces. 
    more » « less