In this paper, we find solutions of minimal [Formula: see text] gauged supergravity corresponding to Janus and RG-flow interfaces. We use holography to calculate symmetric and interface entanglement entropy as well as reflection coefficients and confirm that a recently proposed1inequality involving these quantities is satisfied for the solutions found here.
more »
« less
Janus and RG-flow interfaces in three-dimensional gauged supergravity
A bstract In this paper, we construct Janus-type solutions of three-dimensional gauged supergravity with sixteen supersymmetries. We find solutions which correspond to interfaces between the same CFT on both sides, as well as RG-flow interfaces between CFTs with different numbers of supersymmetries and central charges. The solutions are obtained by solving the flow equations derived from the supersymmetry variations, and they preserve some fraction of the supersymmetries of the AdS 3 vacua.
more »
« less
- Award ID(s):
- 1914412
- PAR ID:
- 10345730
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 3
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract In this paper, we continue the study of Janus and RG-flow interfaces in three dimensional supergravity continuing the work presented in [1]. We consider $$ \mathcal{N} $$ N = 8 gauged supergravity theories which have a $$ \mathcal{N} $$ N = (4 , 4) AdS 3 vacuum with D 1 (2 , 1; α ) × D 1 (2 , 1; α ) symmetry for general α . We derive the BPS flow equations and find numerical solutions. Some holographic quantities such as the entanglement entropy are calculated.more » « less
-
Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.more » « less
-
The fouling of submerged surfaces detrimentally alters stratum properties. Inorganic and organic foulers alike attach to and accumulate on surfaces when the complex interaction between numerous variables governing attachment and colonization is favourable. Unlike naturally evolved solutions, industrial methods of repellence carry adverse environmental impacts. Mammal fur demonstrates high resistance to fouling; however, our understanding of the intricacies of such performance remains limited. Here, we show that the passive trait of fur to dynamically respond to an external flow field dramatically improves its anti-fouling performance over that of fibres rigidly fixed at both ends. We have previously discovered a statistically significant correlation between a group of flow- and stratum-related properties, and the quantified anti-fouling performance of immobile filaments. In this work, we improve the correlation by considering an additional physical factor, the ability of hair to flex. Our work establishes a parametric framework for the design of passive anti-fouling filamentous structures and invites other disciplines to contribute to the investigation of the anti-fouling prowess of mammalian interfaces.more » « less
An official website of the United States government

