skip to main content


Title: Janus and RG-flow interfaces in three-dimensional gauged supergravity
A bstract In this paper, we construct Janus-type solutions of three-dimensional gauged supergravity with sixteen supersymmetries. We find solutions which correspond to interfaces between the same CFT on both sides, as well as RG-flow interfaces between CFTs with different numbers of supersymmetries and central charges. The solutions are obtained by solving the flow equations derived from the supersymmetry variations, and they preserve some fraction of the supersymmetries of the AdS 3 vacua.  more » « less
Award ID(s):
1914412
NSF-PAR ID:
10345730
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fouling of submerged surfaces detrimentally alters stratum properties. Inorganic and organic foulers alike attach to and accumulate on surfaces when the complex interaction between numerous variables governing attachment and colonization is favourable. Unlike naturally evolved solutions, industrial methods of repellence carry adverse environmental impacts. Mammal fur demonstrates high resistance to fouling; however, our understanding of the intricacies of such performance remains limited. Here, we show that the passive trait of fur to dynamically respond to an external flow field dramatically improves its anti-fouling performance over that of fibres rigidly fixed at both ends. We have previously discovered a statistically significant correlation between a group of flow- and stratum-related properties, and the quantified anti-fouling performance of immobile filaments. In this work, we improve the correlation by considering an additional physical factor, the ability of hair to flex. Our work establishes a parametric framework for the design of passive anti-fouling filamentous structures and invites other disciplines to contribute to the investigation of the anti-fouling prowess of mammalian interfaces.

     
    more » « less
  2. To enable the on-demand control of heat flow for sustainable energy solutions, we have been longing for functional thermal components at the nanoscale, in analogue to electronic diodes and transistors. Understanding and discovering fundamental mechanisms that drive thermal rectification are critical to advancing this field. Different mechanisms have been proposed for thermal rectification effects in the classical regime. Using anharmonic atomistic Green's function, we discovered a thermal rectification phenomenon in the quantum regime for nanometer-thick three-dimensional solid interfaces. We found that the anharmonic phonon scatterings across the interface act on the temperature-dependent phonon populations on both sides of the interface, generating the necessary nonlinearity to achieve thermal rectification. This intrinsic thermal interface rectification is a universal phenomenon that can be observed and engineered for nanoscale interfaces.

     
    more » « less
  3. A bstract In this paper, we continue the study of Janus and RG-flow interfaces in three dimensional supergravity continuing the work presented in [1]. We consider $$ \mathcal{N} $$ N = 8 gauged supergravity theories which have a $$ \mathcal{N} $$ N = (4 , 4) AdS 3 vacuum with D 1 (2 , 1; α ) × D 1 (2 , 1; α ) symmetry for general α . We derive the BPS flow equations and find numerical solutions. Some holographic quantities such as the entanglement entropy are calculated. 
    more » « less
  4. The diffusion of colloids, nanoparticles, and small molecules near the gas–liquid interface presents interesting multiphase transport phenomena and unique opportunities for understanding interactions near the surface and interface. Stratification happens when different species preside over the interfaces in the final dried coating structure. Understanding the principles of stratification can lead to emerging technologies for materials’ fabrication and has the potential to unlock innovative industrial solutions, such as smart coatings and drug formulations for controlled release. However, stratification can be perplexing and unpredictable. It may involve a complicated interplay between particles and interfaces. The surface chemistry and solution conditions are critical in determining the race of particles near the interface. Current theory and simulation cannot fully explain the observations in some experiments, especially the newly developed stratification of nano-surfactants. Here, we summarize the efforts in the experimental work, theory, and simulation of stratification, with an emphasis on bridging the knowledge gap between our understanding of surface adsorption and bulk diffusion. We will also propose new mechanisms of stratification based on recent observations of nano-surfactant stratification. More importantly, the discussions here will lay the groundwork for future studies beyond stratification and nano-surfactants. The results will lead to the fundamental understanding of nanoparticle interactions and transport near interfaces, which can profoundly impact many other research fields, including nanocomposites, self-assembly, colloidal stability, and nanomedicine. 
    more » « less
  5. Cloud-native microservice applications use different communication paradigms to network microservices, including both synchronous and asynchronous I/O for exchanging data. Existing solutions depend on kernel-based networking, incurring significant overheads. The interdependence between microservices for these applications involves considerable communication, including contention between multiple concurrent flows or user sessions. In this paper, we design X-IO, a high-performance unified I/O interface that is built on top of shared memory processing with lock-free producer/consumer rings, eliminating kernel networking overheads and contention. X-IO offers a feature-rich interface. X-IO’s zero-copy interface supports building provides truly zero-copy data transfers between microservices, achieving high performance. X-IO also provides a POSIX-like socket interface using HTTP/REST API to achieve seamless porting of microservices to X-IO, without any change to the application code. X-IO supports concurrent connections for microservices that require distinct user sessions operating in parallel. Our preliminary experimental results show that X-IO’s zero-copy interfaces achieve 2.8x-4.1x performance improvement compared to kernel-based interfaces. Its socket interfaces outperform kernel TCP sockets and achieve performance close to UNIX-domain sockets. The HTTP/REST APIs in X-IO perform 1.4 x-2.3 x better than kernel-based alternatives with concurrent connections. 
    more » « less