A bstract We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $$ \mathcal{N} $$ N = 1 supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) and review its applications to Liouville gravity. We then derive the corresponding matrix element for U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)) and apply it to explain structural features of $$ \mathcal{N} $$ N = 1 Liouville supergravity. We show that this matrix element has the following properties: (1) its q → 1 limit is the classical OSp + (1 | 2 , ℝ) Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $$ \mathcal{N} $$ N = 1 Liouville supergravity, and (3) it leads to 3 j -symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $$ \mathcal{N} $$ N = 1 Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) or the quantum supergroup U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)).
more »
« less
Phase transitions for deformations of JT supergravity and matrix models
A bstract We analyze deformations of $$ \mathcal{N} $$ N = 1 Jackiw-Teitelboim (JT) supergravity by adding a gas of defects, equivalent to changing the dilaton potential. We compute the Euclidean partition function in a topological expansion and find that it matches the perturbative expansion of a random matrix model to all orders. The matrix model implements an average over the Hamiltonian of a dual holographic description and provides a stable non-perturbative completion of these theories of $$ \mathcal{N} $$ N = 1 dilaton-supergravity. For some range of deformations, the supergravity spectral density becomes negative, yielding an ill-defined topological expansion. To solve this problem, we use the matrix model description and show the negative spectrum is resolved via a phase transition analogous to the Gross-Witten-Wadia transition. The matrix model contains a rich and novel phase structure that we explore in detail, using both perturbative and non-perturbative techniques.
more »
« less
- Award ID(s):
- 1911298
- PAR ID:
- 10345950
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> It has long been conjectured that the largeNdeconfinement phase transition of$$ \mathcal{N} $$ = 4 SU(N) super-Yang-Mills corresponds via AdS/CFT to the Hawking-Page transition in which black holes dominate the thermal ensemble, and quantitative evidence of this has come through the recent matching of the superconformal index of$$ \frac{1}{16} $$ -BPS states to the supersymmetric black hole entropy. We introduce the half-BPS Gukov-Witten surface defect as a probe of the superconformal index, which also serves as an order parameter for the deconfinement transition. This can be studied directly in field theory as a modification of the usual unitary matrix model or in the dual description as a D3-brane probe in the background of a (complex) supersymmetric black hole. Using a saddle point approximation, we determine our defect index in the largeNlimit as a simple function of the chemical potentials and show independently that it is reproduced by the renormalized action of the brane in the black hole background. Along the way, we also comment on the Cardy limit and the thermodynamics of the D3-brane in the generalized ensemble. The defect index sharply distinguishes between the confining and the deconfining phases of the gauge theory and thus is a supersymmetric non-perturbative order parameter for these largeNphase transitions which deserves further investigation. Finally, our work provides an example where the properties of a black hole coupled to an external system can be analyzed precisely.more » « less
-
A<sc>bstract</sc> The planar integrability of$$ \mathcal{N} $$ = 4 super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the SU(2)$$ \mathcal{N} $$ = 4 SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators withR-chargeJin the limitJ→ ∞ with$$ {\lambda}_J\equiv {g}_{\textrm{YM}}^2J/2 $$ fixed. The dynamics in thislarge charge ’t Hooft limitis constrained by a centrally-extended$$ \mathfrak{psu} $$ (2|2)2symmetry that played a crucial role for the planar integrability. To the leading order in 1/J, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general SU(N) gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of sizeJ/2 that reproduces our large charge result atN= 2. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin ’t Hooft limit, the combined largeN-largeJlimits, and applications to general$$ \mathcal{N} $$ = 2 superconformal field theories.more » « less
-
A<sc>bstract</sc> Generalizing previous results for$$ \mathcal{N} $$ = 0 and$$ \mathcal{N} $$ = 1, we analyze$$ \mathcal{N} $$ = 2 JT supergravity on asymptotically AdS2spaces with arbitrary topology and show that this theory of gravity is dual, in a holographic sense, to a certain random matrix ensemble in which supermultiplets of differentR-charge are statistically independent and each is described by its own$$ \mathcal{N} $$ = 2 random matrix ensemble. We also analyze the case with a time-reversal symmetry, either commuting or anticommuting with theR-charge. In order to compare supergravity to random matrix theory, we develop an$$ \mathcal{N} $$ = 2 analog of the recursion relations for Weil-Petersson volumes originally discovered by Mirzakhani in the bosonic case.more » « less
-
A bstract We propose a holographic description of $$ \mathcal{N} $$ N = 4 super Yang-Mills on the four-dimensional real projective space $$ \mathbbm{RP} $$ RP 4 . We first construct the dual background in the framework of five-dimensional $$ \mathcal{N} $$ N = 8 gauged supergravity, and then uplift it to a new one-half BPS solution of type IIB supergravity. A salient feature of our solution is the presence of a bulk naked singularity whose local behavior resembles that of an O1 − plane in flat space.more » « less
An official website of the United States government

