Abstract Convergence of a finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly the wetting phase pressure and saturation, which are the primary unknowns. Well-posedness is obtained in [J. Numer. Math., 29(2), 2021]. Theoretical convergence is proved via a compactness argument. The numerical phase saturation converges strongly to a weak solution in L 2 in space and in time whereas the numerical phase pressures converge strongly to weak solutions in L 2 in space almost everywhere in time. The proof is not straightforward because of the degeneracy of the phase mobilities and the unboundedness of the derivative of the capillary pressure.
more »
« less
A finite element method for degenerate two-phase flow in porous media. Part I: Well-posedness
Abstract A finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly thewetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle. Stability of the scheme and existence of a solution are established.
more »
« less
- Award ID(s):
- 1913291
- PAR ID:
- 10345972
- Date Published:
- Journal Name:
- Journal of Numerical Mathematics
- Volume:
- 29
- Issue:
- 2
- ISSN:
- 1570-2820
- Page Range / eLocation ID:
- 81 to 101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with energy above $$\sim $$ ∼ 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $$^{136} \hbox {Xe}$$ 136 Xe at its Q value, $$Q_{\beta \beta }\simeq 2.46\,\hbox {MeV}$$ Q β β ≃ 2.46 MeV . For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at $$1\,\sigma /\mu $$ 1 σ / μ is as low as ( $$0.80 \pm 0.02$$ 0.80 ± 0.02 ) % in its one-ton fiducial mass, and for single-site interactions at $$Q_{\beta \beta }$$ Q β β . We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.more » « less
-
In this paper, we propose a new spatial temperature aware transient EM induced stress analysis method. The new method consists of two new contributions: First, we propose a new TM-aware void saturation volume estimation method for fast immortality check in the post-voiding phase for the first time. We derive the analytic formula to estimate the void saturation in the presence of spatial temperature gradients due to Joule heating. Second, we developed a fast numerical solution for EM-induced stress analysis for multi-segment interconnect trees considering TM effect. The new method first transforms the coupled EM-TM partial differential equations into linear time-invariant ordinary differential equations (ODEs). Then extended Krylov subspace-based reduction technique is employed to reduce the size of the original system matrices so that they can be efficiently simulated in the time domain. The proposed method can perform the simulation process for both void nucleation and void growth phases under time-varying input currents and position-dependent temperatures. The numerical results show that, compared to the recently proposed semi-analytic EM-TM method, the proposed method can lead to about 28x speedup on average for the interconnect with up to 1000 branches for both void nucleation and growth phases with negligible errors.more » « less
-
Abstract We present simulations of two-phase flow using the Rothman and Keller colour gradient Lattice Boltzmann method to study viscous fingering when a “red fluid” invades a porous model initially filled with a “blue” fluid with different viscosity. We conducted eleven suites of 81 numerical experiments totalling 891 simulations, where each suite had a different random realization of the porous model and spanned viscosity ratios in the range$$M\in [0.01,100]$$ and wetting angles in the range$$\theta _w\in [180^\circ ,0^\circ ]$$ to allow us to study the effect of these parameters on the fluid-displacement morphology and saturation at breakthrough (sweep). Although sweep often increased with wettability, this was not always so and the sweep phase space landscape, defined as the difference in saturation at a given wetting angle relative to saturation for the non-wetting case, had hills, ridges and valleys. At low viscosity ratios, flow at breakthrough is localized through narrow fingers that span the model. After breakthrough, the flow field continues to evolve and the saturation continues to increase albeit at a reduced rate, and eventually exceeds 90% for both non-wetting and wetting cases. The existence of a complicated sweep phase space at breakthrough, and continued post-breakthrough evolution suggests the hydrodynamics and sweep is a complicated function of wetting angle, viscosity ratio and time, which has major potential implications to Enhanced Oil Recovery by water flooding, and hence, on estimates of global oil reserves. Validation of these results via experiments is required to ensure they translate to field studies.more » « less
-
This work reports a method of producing flexible cobalt nanowires (NWs) directly from the chemical conversion of bulk precursors at room temperature. Chemical reduction of Li 6 CoCl 8 produces a nanocomposite of Co and LiCl, of which the salt is subsequently removed. The dilute concentration of Co in the precursor combined with the anisotropic crystal structure of the hcp phase leads to 1D growth in the absence of any templates or additives. The Co NWs are shown to have high saturation magnetization (130.6 emu g −1 ). Our understanding of the NW formation mechanism points to new directions of scalable nanostructure generation.more » « less
An official website of the United States government

