Coarse-grained molecular dynamics (CGMD) simulations address lengthscales and timescales that are critical to many chemical and material applications. Nevertheless, contemporary CGMD modeling is relatively bespoke and there are no black-box CGMD methodologies available that could play a comparable role in discovery applications that density functional theory plays for electronic structure. This gap might be filled by machine learning (ML)-based CGMD potentials that simplify model development, but these methods are still in their early stages and have yet to demonstrate a significant advantage over existing physics-based CGMD methods. Here, we explore the potential of Δ-learning models to leverage the advantages of these two approaches. This is implemented by using ML-based potentials to learn the difference between the target CGMD variable and the predictions of physics-based potentials. The Δ-models are benchmarked against the baseline models in reproducing on-target and off-target atomistic properties as a function of CG resolution, mapping operator, and system topology. The Δ-models outperform the reference ML-only CGMD models in nearly all scenarios. In several cases, the ML-only models manage to minimize training errors while still producing qualitatively incorrect dynamics, which is corrected by the Δ-models. Given their negligible added cost, Δ-models provide essentially free gains over their ML-only counterparts. Nevertheless, an unexpected finding is that neither the Δ-learning models nor the ML-only models significantly outperform the elementary pairwise models in reproducing atomistic properties. This fundamental failure is attributed to the relatively large irreducible force errors associated with coarse-graining that produces little benefit from using more complex potentials.
- Award ID(s):
- 1934721
- NSF-PAR ID:
- 10346139
- Date Published:
- Journal Name:
- ACM Computing Surveys
- ISSN:
- 0360-0300
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract First-principles techniques for electronic transport property prediction have seen rapid progress in recent years. However, it remains a challenge to predict properties of heterostructures incorporating fabrication-dependent variability. Machine-learning (ML) approaches are increasingly being used to accelerate design and discovery of new materials with targeted properties, and extend the applicability of first-principles techniques to larger systems. However, few studies exploited ML techniques to characterize relationships between local atomic structures and global electronic transport coefficients. In this work, we propose an electronic-transport-informatics (ETI) framework that trains on ab initio models of small systems and predicts thermopower of fabricated silicon/germanium heterostructures, matching measured data. We demonstrate application of ML approaches to extract important physics that determines electronic transport in semiconductor heterostructures, and bridge the gap between ab initio accessible models and fabricated systems. We anticipate that ETI framework would have broad applicability to diverse materials classes.
-
null (Ed.)Glasses have been an integral part of human life for more than 2000 years. Despite several years of research and analysis, some fundamental and practical questions on glasses still remain unanswered. While most of the earlier approaches were based on (i) expert knowledge and intuition, (ii) Edisonian trial and error, or (iii) physics-driven modeling and analysis, recent studies suggest that data-driven techniques, such as artificial intelligence (AI) and machine learning (ML), can provide fresh perspectives to tackle some of these questions. In this article, we identify 21 grand challenges in glass science, the solutions of which are either enabling AI and ML or enabled by AI and ML to accelerate the field of glass science. The challenges presented here range from fundamental questions related to glass formation and composition–processing–property relationships to industrial problems such as automated flaw detection in glass manufacturing. We believe that the present article will instill enthusiasm among the readers to explore some of the grand challenges outlined here and to discover many more challenges that can advance the field of glass science, engineering, and technology.more » « less
-
Dynamical systems that evolve continuously over time are ubiquitous throughout science and engineering. Machine learning (ML) provides data-driven approaches to model and predict the dynamics of such systems. A core issue with this approach is that ML models are typically trained on discrete data, using ML methodologies that are not aware of underlying continuity properties. This results in models that often do not capture any underlying continuous dynamics—either of the system of interest, or indeed of any related system. To address this challenge, we develop a convergence test based on numerical analysis theory. Our test verifies whether a model has learned a function that accurately approximates an underlying continuous dynamics. Models that fail this test fail to capture relevant dynamics, rendering them of limited utility for many scientific prediction tasks; while models that pass this test enable both better interpolation and better extrapolation in multiple ways. Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.more » « less
-
Abstract We present an overview of recent work on using artificial intelligence (AI)/machine learning (ML) techniques for forecasting convective weather and its associated hazards, including tornadoes, hail, wind, and lightning. These high-impact phenomena globally cause both massive property damage and loss of life, yet they are very challenging to forecast. Given the recent explosion in developing ML techniques across the weather spectrum and the fact that the skillful prediction of convective weather has immediate societal benefits, we present a thorough review of the current state of the art in AI and ML techniques for convective hazards. Our review includes both traditional approaches, including support vector machines and decision trees, as well as deep learning approaches. We highlight the challenges in developing ML approaches to forecast these phenomena across a variety of spatial and temporal scales. We end with a discussion of promising areas of future work for ML for convective weather, including a discussion of the need to create trustworthy AI forecasts that can be used for forecasters in real time and the need for active cross-sector collaboration on testbeds to validate ML methods in operational situations.
Significance Statement We provide an overview of recent machine learning research in predicting hazards from thunderstorms, specifically looking at lightning, wind, hail, and tornadoes. These hazards kill people worldwide and also destroy property and livestock. Improving the prediction of these events in both the local space as well as globally can save lives and property. By providing this review, we aim to spur additional research into developing machine learning approaches for convective hazard prediction.