skip to main content


Title: OGLE-2016-BLG-1093Lb: A Sub-Jupiter-mass Spitzer Planet Located in the Galactic Bulge
Abstract OGLE-2016-BLG-1093 is a planetary microlensing event that is part of the statistical Spitzer microlens parallax sample. The precise measurement of the microlens parallax effect for this event, combined with the measurement of finite-source effects, leads to a direct measurement of the lens masses and system distance, M host =0.38–0.57 M ⊙ and m p = 0.59–0.87 M Jup , and the system is located at the Galactic bulge ( D L ∼ 8.1 kpc). Because this was a high-magnification event, we are also able to empirically show that the “cheap-space parallax” concept produces well-constrained (and consistent) results for ∣ π E ∣. This demonstrates that this concept can be extended to many two-body lenses. Finally, we briefly explore systematics in the Spitzer light curve in this event and show that their potential impact is strongly mitigated by the color constraint.  more » « less
Award ID(s):
2108414
NSF-PAR ID:
10346371
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
163
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We report the discovery and analysis of a planet in the microlensing event OGLE-2018-BLG-0799. The planetary signal was observed by several ground-based telescopes, and the planet-host mass ratio is q = (2.65 ± 0.16) × 10−3. The ground-based observations yield a constraint on the angular Einstein radius θE, and the microlensing parallax vector $\boldsymbol{{\pi} }_{\rm E}$, is strongly constrained by the Spitzer data. However, the 2019 Spitzer baseline data reveal systematics in the Spitzer photometry, so there is ambiguity in the magnitude of the parallax. In our preferred interpretation, a full Bayesian analysis using a Galactic model indicates that the planetary system is composed of an $M_{\rm planet} = 0.26_{-0.11}^{+0.22}M_{\rm J}$ planet orbiting an $M_{\rm host} = 0.093_{-0.038}^{+0.082}~\mathrm{M}_{\odot }$, at a distance of $D_{\rm L} = 3.71_{-1.70}^{+3.24}$ kpc. An alternate interpretation of the data shifts the localization of the minima along the arc-shaped microlens parallax constraints. This, in turn, yields a more massive host with median mass of $0.13 {\, \mathrm{M}_{\odot }}$ at a distance of 6.3 kpc. This analysis demonstrates the robustness of the osculating circles formalism, but shows that further investigation is needed to assess how systematics affect the specific localization of the microlens parallax vector and, consequently, the inferred physical parameters. 
    more » « less
  2. Abstract

    We systematically investigate Vandorou et al.’s claim to have detected the host star of the low-mass-ratio (q< 10−4) microlensing planet OGLE-2016-BLG-1195Lb, via Keck adaptive optics (AO) measurements Δt= 4.12 yr after the event’s peak (t0). If correct, this measurement would contradict the microlens-parallax measurement derived from Spitzer observations taken neart0. We show that this host identification would be in 4σconflict with the original ground-based relative lens–source proper-motion measurements. By contrast, Gould estimated a probabilityp= 10% that the “other star” resolved by single-epoch late-time AO would be a companion to the host or the microlensed source, which is much more probable than a 4σstatistical fluctuation. Independent of this proper-motion discrepancy, the kinematics of this host identification are substantially less probable than those of the Spitzer solution. Hence, this identification should not be accepted, pending additional observations that would either confirm or contradict it, which could be taken in 2023. Motivated by this tension, we present two additional investigations. We explore the possibility that Vandorou et al. identified the wrong “star” for their analysis. Astrometry of KMT and Keck images favors a star (or asterism) lying about 175 mas northwest of Vandorou et al.’s star. We also present event parameters from a combined fit to all survey data, which yields a more precise mass ratio,q= (4.6 ± 0.4) × 10−5. Finally, we discuss the broader implications of minimizing such false positives for the first measurement of the planet mass function, which will become possible when AO on next-generation telescopes are applied to microlensing planets.

     
    more » « less
  3. Context. Brown dwarfs are transition objects between stars and planets that are still poorly understood, for which several competing mechanisms have been proposed to describe their formation. Mass measurements are generally difficult to carry out for isolated objects as well as for brown dwarfs orbiting low-mass stars, which are often too faint for a spectroscopic follow-up. Aims. Microlensing provides an alternative tool for the discovery and investigation of such faint systems. Here, we present an analysis of the microlensing event OGLE-2019-BLG-0033/MOA-2019-BLG-035, which is caused by a binary system composed of a brown dwarf orbiting a red dwarf. Methods. Thanks to extensive ground observations and the availability of space observations from Spitzer, it has been possible to obtain accurate estimates of all microlensing parameters, including the parallax, source radius, and orbital motion of the binary lens. Results. Following an accurate modeling process, we found that the lens is composed of a red dwarf with a mass of M 1 = 0.149 ± 0.010 M ⊙ and a brown dwarf with a mass of M 2 = 0.0463 ± 0.0031 M ⊙ at a projected separation of a ⊥ = 0.585 au. The system has a peculiar velocity that is typical of old metal-poor populations in the thick disk. A percent-level precision in the mass measurement of brown dwarfs has been achieved only in a few microlensing events up to now, but will likely become more common in the future thanks to the Roman space telescope. 
    more » « less
  4. Abstract We report the analysis of microlensing event OGLE-2017-BLG-1038, observed by the Optical Gravitational Lensing Experiment, Korean Microlensing Telescope Network, and Spitzer telescopes. The event is caused by a giant source star in the Galactic Bulge passing over a large resonant binary-lens caustic. The availability of space-based data allows the full set of physical parameters to be calculated. However, there exists an eightfold degeneracy in the parallax measurement. The four best solutions correspond to very-low-mass binaries near ( M 1 = 170 − 50 + 40 M J and M 2 = 110 − 30 + 20 M J ), or well below ( M 1 = 22.5 − 0.4 + 0.7 M J and M 2 = 13.3 − 0.3 + 0.4 M J ) the boundary between stars and brown dwarfs. A conventional analysis, with scaled uncertainties for Spitzer data, implies a very-low-mass brown-dwarf binary lens at a distance of 2 kpc. Compensating for systematic Spitzer errors using a Gaussian process model suggests that a higher mass M-dwarf binary at 6 kpc is equally likely. A Bayesian comparison based on a galactic model favors the larger-mass solutions. We demonstrate how this degeneracy can be resolved within the next 10 years through infrared adaptive-optics imaging with a 40 m class telescope. 
    more » « less
  5. Abstract

    We report on the discovery and analysis of the planetary microlensing event OGLE-2019-BLG-1180 with a planet-to-star mass ratioq∼ 0.003. The event OGLE-2019-BLG-1180 has unambiguous cusp-passing and caustic-crossing anomalies, which were caused by a wide planetary caustic withs≃ 2, wheresis the star–planet separation in units of the angular Einstein radiusθE. Thanks to well-covered anomalies by the Korea Micorolensing Telescope Network (KMTNet), we measure both the angular Einstein radius and the microlens parallax in spite of a relatively short event timescale oftE= 28 days. However, because of a weak constraint on the parallax, we conduct a Bayesian analysis to estimate the physical lens parameters. We find that the lens system is a super-Jupiter-mass planet ofMp=1.750.51+0.53MJorbiting a late-type star ofMh=0.550.26+0.27Mat a distanceDL=6.11.3+0.9kpc. The projected star–planet separation isa=5.191.23+0.90au, which means that the planet orbits at about four times the snow line of the host star. Considering the relative lens–source proper motion ofμrel= 6 mas yr−1, the lens will be separated from the source by 60 mas in 2029. At that time one can measure the lens flux from adaptive optics imaging of Keck or a next-generation 30 m class telescope. OGLE-2019-BLG-1180Lb represents a growing population of wide-orbit planets detected by KMTNet, so we also present a general investigation into prospects for further expanding the sample of such planets.

     
    more » « less