skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pandemic-associated mobility restrictions could cause increases in dengue virus transmission
Background The COVID-19 pandemic has induced unprecedented reductions in human mobility and social contacts throughout the world. Because dengue virus (DENV) transmission is strongly driven by human mobility, behavioral changes associated with the pandemic have been hypothesized to impact dengue incidence. By discouraging human contact, COVID-19 control measures have also disrupted dengue vector control interventions, the most effective of which require entry into homes. We sought to investigate how and why dengue incidence could differ under a lockdown scenario with a proportion of the population sheltered at home. Methodology & principal findings We used an agent-based model with a realistic treatment of human mobility and vector control. We found that a lockdown in which 70% of the population sheltered at home and which occurred in a season when a new serotype invaded could lead to a small average increase in cumulative DENV infections of up to 10%, depending on the time of year lockdown occurred. Lockdown had a more pronounced effect on the spatial distribution of DENV infections, with higher incidence under lockdown in regions with higher mosquito abundance. Transmission was also more focused in homes following lockdown. The proportion of people infected in their own home rose from 54% under normal conditions to 66% under lockdown, and the household secondary attack rate rose from 0.109 to 0.128, a 17% increase. When we considered that lockdown measures could disrupt regular, city-wide vector control campaigns, the increase in incidence was more pronounced than with lockdown alone, especially if lockdown occurred at the optimal time for vector control. Conclusions & significance Our results indicate that an unintended outcome of lockdown measures may be to adversely alter the epidemiology of dengue. This observation has important implications for an improved understanding of dengue epidemiology and effective application of dengue vector control. When coordinating public health responses during a syndemic, it is important to monitor multiple infections and understand that an intervention against one disease may exacerbate another.  more » « less
Award ID(s):
2027718
PAR ID:
10346529
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Christofferson, Rebecca C.
Date Published:
Journal Name:
PLOS Neglected Tropical Diseases
Volume:
15
Issue:
8
ISSN:
1935-2735
Page Range / eLocation ID:
e0009603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic. 
    more » « less
  2. Abstract Deriving effective mobility control measures is critical for the control of COVID-19 spreading. In response to the COVID-19 pandemic, many countries and regions implemented travel restrictions and quarantines to reduce human mobility and thus reduce virus transmission. But since human mobility decreased heterogeneously, we lack empirical evidence of the extent to which the reductions in mobility alter the way people from different regions of cities are connected, and what containment policies could complement mobility reductions to conquer the pandemic. Here, we examined individual movements in 21 of the most affected counties in the United States, showing that mobility reduction leads to a segregated place network and alters its relationship with pandemic spread. Our findings suggest localized area-specific policies, such as geo-fencing, as viable alternatives to city-wide lockdown for conquering the pandemic after mobility was reduced. 
    more » « less
  3. The incidence ofAedes-borne pathogens has been increasing despite vector control efforts. Control strategies typically target households (HH), whereAedesmosquitoes breed in HH containers and bite indoors. However, our study in Kenyan cities of Kisumu and Ukunda (2019–2022) revealed highAedesabundance in public spaces, prompting the question: How important are non-household (NH) environments for dengue transmission and control? Using field data and human activity patterns, we developed an agent-based model simulating transmission across HH and five types of NH environments, which was then used to evaluate preventive (before an epidemic) and reactive (after an epidemic commences) vector control scenarios. Our findings estimate over half of infections occurring in NH settings, particularly workplaces, markets and recreational sites. Container removal was more effective in NH than in HH areas, contrasting with the global focus on HH-based management. Greater reductions in dengue cases occurred with early, high-coverage interventions, especially in NH locations. Additionally, local ecological factors, such as uneven water container distribution, influence control outcomes. This study underscores the importance of vector control in both HH and NH environments in endemic settings. It highlights a specific approach to inform evidence-based decision-making to target limited vector control resources for optimal control. 
    more » « less
  4. null (Ed.)
    The dengue virus (DENV) is a vector-borne flavivirus that infects around 390 million individuals each year with 2.5 billion being in danger. Having access to testing is paramount in preventing future infections and receiving adequate treatment. Currently, there are numerous conventional methods for DENV testing, such as NS1 based antigen testing, IgM/IgG antibody testing, and Polymerase Chain Reaction (PCR). In addition, novel methods are emerging that can cut both cost and time. Such methods can be effective in rural and low-income areas throughout the world. In this paper, we discuss the structural evolution of the virus followed by a comprehensive review of current dengue detection strategies and methods that are being developed or commercialized. We also discuss the state of art biosensing technologies, evaluated their performance and outline strategies to address challenges posed by the disease. Further, we outline future guidelines for the improved usage of diagnostic tools during recurrence or future outbreaks of DENV. 
    more » « less
  5. Traditional mosquito vector control methods have proved ineffective in controlling the spread of dengue fever. This study aimed to assess the effectiveness of community engagement through student-led science in promoting dengue prevention and socioecological factors in the temperate urban city of Córdoba, Argentina. It assesses community perceptions, knowledge, attitudes, and preventive practices regarding dengue fever and its vector. Results showed a significant increase in knowledge about the vector and the disease and respondents’ adoption of good preventive practices. Student-led science was identified as a valuable tool for reaching households and leading to behavior changes at home. Furthermore, the findings highlighted the need for school programs to address vector biology and vector-borne disease prevention all year round. This study provides invaluable insights into the effectiveness of community engagement through student-led science to promote dengue prevention and socioecological factors. The findings suggest that this approach could be used to control the spread in other regions affected by the disease. 
    more » « less