skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A ν supersymmetric anomaly-free atlas
A bstract Extensions of the minimal supersymmetric standard model (MSSM) gauge group abound in the literature. Several of these include an additional U(1) X gauge group. Chiral fermions’ charge assignments under U(1) X are constrained to cancel local anomalies in the extension and they determine the structure and phenomenology of it. We provide all anomaly-free charge assignments up to a maximum absolute charge of Q max = 10, assuming that the chiral superfield content of the model is that of the MSSM plus up to three Standard Model (SM) singlet superfields. The fermionic components of these SM singlets may play the rôle of right-handed neutrinos, whereas one of the scalar components may play the rôle of the flavon, spontaneously breaking U(1) X . Easily scanned lists of the charge assignments are made publicly available on Zenodo. For the case where no restriction is placed upon Q max , we also provide an analytic parameterisation of the general solution using simple techniques from algebraic geometry.  more » « less
Award ID(s):
2014071
PAR ID:
10346704
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
2
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We develop the idea that the unprecedented precision in Standard Model (SM) measurements, with further improvement at the HL-LHC, enables new searches for physics Beyond the Standard Model (BSM). As an illustration, we demonstrate that the measured kinematic distributions of theℓ+ Image missing<#comment/>final state not only determine the mass of theWboson, but are also sensitive to light new physics. Such a search for new physics thus requires asimultaneousfit to the BSM and SM parameters, “unifying” searches and measurements at the LHC and Tevatron. In this paper, we complete the program initiated in our earlier work [1]. In particular, we analyze (i) novel decay modes of theWboson with a neutrinophilic invisible scalar or with a heavy neutrino; (ii) modified production ofWbosons, namely, associated with a hadrophilic invisibleZ′ gauge boson; and (iii) scenarios without an on-shellWboson, such as slepton-sneutrino production in the Minimal Supersymmetric Standard Model (MSSM). Here, we complement our previous MSSM analysis in [1] by considering a different kinematic region. Our results highlight that new physics can still be directly discovered at the LHC, including light new physics, via SM precision measurements. Furthermore, we illustrate that such BSM signals are subtle, yet potentially large enough to affect the precision measurements of SM parameters themselves, such as theWboson mass. 
    more » « less
  2. A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies. 
    more » « less
  3. A<sc>bstract</sc> We study a class of supersymmetric Froggatt-Nielsen (FN) models with multiple U(1) symmetries and Standard Model (SM) singlets inspired by heterotic string compactifications on Calabi-Yau threefolds. The string-theoretic origin imposes a particular charge pattern on the SM fields and FN singlets, dividing the latter into perturbative and non-perturbative types. Employing systematic and heuristic search strategies, such as genetic algorithms, we identify charge assignments and singlet VEVs that replicate the observed mass and mixing hierarchies in the quark sector, and subsequently refine the Yukawa matrix coefficients to accurately match the observed values for the Higgs VEV, the quark and charged lepton masses and the CKM matrix. This bottom-up approach complements top-down string constructions and our results demonstrate that string FN models possess a sufficiently rich structure to account for flavour physics. On the other hand, the limited number of distinct viable charge patterns identified here indicates that flavour physics imposes tight constraints on string theory models, adding new constraints on particle spectra that are essential for achieving a realistic phenomenology. 
    more » « less
  4. A bstract We propose that the electroweak and flavour quantum numbers of the Standard Model (SM) could be unified at high energies in an SU(4) × Sp(6) L × Sp(6) R anomaly-free gauge model. All the SM fermions are packaged into two fundamental fields, Ψ L ∼ ( 4 , 6 , 1 ) and Ψ R ∼ ( 4 , 1 , 6 ), thereby explaining the origin of three families of fermions. The SM Higgs, being electroweakly charged, necessarily becomes charged also under flavour when embedded in the UV model. It is therefore natural for its vacuum expectation value to couple only to the third family. The other components of the UV Higgs fields are presumed heavy. Extra scalars are needed to break this symmetry down to the SM, which can proceed via ‘flavour-deconstructed’ gauge groups; for instance, we propose a pattern Sp(6) L → $$ {\prod}_{i=1}^3\mathrm{SU}{(2)}_{L,i}\to \mathrm{SU}{(2)}_L $$ ∏ i = 1 3 SU 2 L , i → SU 2 L for the left-handed factor. When the heavy Higgs components are integrated out, realistic quark Yukawa couplings with in-built hierarchies are naturally generated without any further ingredients, if we assume the various symmetry breaking scalars condense at different scales. The CKM matrix that we compute is not a generic unitary matrix, but it can precisely fit the observed values. 
    more » « less
  5. We present a family of electron-based coupled-wire models of bosonic orbifold topological phases, referred to as twist liquids, in two spatial dimensions. All local fermion degrees of freedom are gapped and removed from the topological order by many-body interactions. Bosonic chiral spin liquids and anyonic superconductors are constructed on an array of interacting wires, each supports emergent massless Majorana fermions that are non-local (fractional) and constitute the S O ( N ) Kac-Moody Wess-Zumino-Witten algebra at level 1. We focus on the dihedral D k symmetry of S O ( 2 n ) 1 , and its promotion to a gauge symmetry by manipulating the locality of fermion pairs. Gauging the symmetry (sub)group generates the C / G twist liquids, where G = Z 2 for C = U ( 1 ) l , S U ( n ) 1 , and G = Z 2 , Z k , D k for C = S O ( 2 n ) 1 . We construct exactly solvable models for all of these topological states. We prove the presence of a bulk excitation energy gap and demonstrate the appearance of edge orbifold conformal field theories corresponding to the twist liquid topological orders. We analyze the statistical properties of the anyon excitations, including the non-Abelian metaplectic anyons and a new class of quasiparticles referred to as Ising-fluxons. We show an eight-fold periodic gauging pattern in S O ( 2 n ) 1 / G by identifying the non-chiral components of the twist liquids with discrete gauge theories. 
    more » « less