Learning-based image/video codecs typically utilizethe well known auto-encoder structure where the encoder trans-forms input data to a low-dimensional latent representation.Efficient latent encoding can reduce bandwidth needs duringcompression for transmission and storage. In this paper, weexamine the effect of assigning high level coarse grouping labelsto each latent vector. Designing coding profiles for each latentgroup can achieve high compression encoding. We show thatsuch grouping can be learned via end-to-end optimization of thecodec and the deep learning (DL) model to optimize rate-accuracyfor a given data set. For cloud-based inference, source encodercan select a coding profile based on its learned grouping andencode the data features accordingly. Our test results on imageclassification show that significant performance improvementcan be achieved with learned grouping over its non-groupingcounterpart.
more »
« less
End-to-End Image Classification and Compression with variational autoencoders
The past decade has witnessed the rising dominance of deep learning and artificial intelligence in a wide range of applications. In particular, the ocean of wireless smartphones and IoT devices continue to fuel the tremendous growth of edge/cloudbased machine learning (ML) systems including image/speech recognition and classification. To overcome the infrastructural barrier of limited network bandwidth in cloud ML, existing solutions have mainly relied on traditional compression codecs such as JPEG that were historically engineered for humanend users instead of ML algorithms. Traditional codecs do not necessarily preserve features important to ML algorithms under limited bandwidth, leading to potentially inferior performance. This work investigates application-driven optimization of programmable commercial codec settings for networked learning tasks such as image classification. Based on the foundation of variational autoencoders (VAEs), we develop an end-to-end networked learning framework by jointly optimizing the codec and classifier without reconstructing images for given data rate (bandwidth). Compared with standard JPEG codec, the proposed VAE joint compression and classification framework achieves classification accuracy improvement by over 10% and 4%, respectively, for CIFAR-10 and ImageNet-1k data sets at data rate of 0.8 bpp. Our proposed VAE-based models show 65%99% reductions in encoder size, 1.5 13.1 improvements in inference speed and 25%99% savings in power compared to baseline models. We further show that a simple decoder can reconstruct images with sufficient quality without compromising classification accuracy.
more »
« less
- PAR ID:
- 10347113
- Date Published:
- Journal Name:
- IEEE Internet of Things Journal
- ISSN:
- 2372-2541
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IoT devices are increasingly the source of data for machine learning (ML) applications running on edge servers. Data transmissions from devices to servers are often over local wireless networks whose bandwidth is not just limited but, more importantly, variable. Furthermore, in cyber-physical systems interacting with the physical environment, image offloading is also commonly subject to timing constraints. It is, therefore, important to develop an adaptive approach that maximizes the inference performance of ML applications under timing constraints and the resource constraints of IoT devices. In this paper, we use image classification as our target application and propose progressive neural compression (PNC) as an efficient solution to this problem. Although neural compression has been used to compress images for different ML applications, existing solutions often produce fixed-size outputs that are unsuitable for timing-constrained offloading over variable bandwidth. To address this limitation, we train a multi-objective rateless autoencoder that optimizes for multiple compression rates via stochastic taildrop to create a compression solution that produces features ordered according to their importance to inference performance. Features are then transmitted in that order based on available bandwidth, with classification ultimately performed using the (sub)set of features received by the deadline. We demonstrate the benefits of PNC over state-of-the-art neural compression approaches and traditional compression methods on a testbed comprising an IoT device and an edge server connected over a wireless network with varying bandwidth.more » « less
-
Convolutional Neural Networks (CNN) have given rise to numerous visual analytics applications at the edge of the Internet. The image is typically captured by cameras and then live-streamed to edge servers for analytics due to the prohibitive cost of running CNN on computation-constrained end devices. A critical component to ensure low-latency and accurate visual analytics offloading over low bandwidth networks is image compression which minimizes the amount of visual data to offload and maximizes the decoding quality of salient pixels for analytics. Despite the wide adoption, JPEG standards and traditional image compression techniques do not address the accuracy of analytics tasks, leading to ineffective compression for visual analytics offloading. Although recent machine-centric image compression techniques leverage sophisticated neural network models or hardware architecture to support the accuracy-bandwidth trade-off, they introduce excessive latency in the visual analytics offloading pipeline. This paper presents CICO, a Context-aware Image Compression Optimization framework to achieve low-bandwidth and low-latency visual analytics offloading. CICO contextualizes image compression for offloading by employing easily-computable low-level image features to understand the importance of different image regions for a visual analytics task. Accordingly, CICO can optimize the trade-off between compression size and analytics accuracy. Extensive real-world experiments demonstrate that CICO reduces the bandwidth consumption of existing compression methods by up to 40% under comparable analytics accuracy. Regarding the low-latency support, CICO achieves up to a 2x speedup over state-of-the-art compression techniques.more » « less
-
Neural codecs have demonstrated strong performance in high-fidelity compression of audio signals at low bitrates. The token-based representations produced by these codecs have proven particularly useful for generative modeling. While much research has focused on improvements in compression ratio and perceptual transparency, recent works have largely overlooked another desirable codec property -- \textit{idempotence}, the stability of compressed outputs under multiple rounds of encoding. We find that state-of-the-art neural codecs exhibit varied degrees of idempotence, with some degrading audio outputs significantly after as few as three encodings. We investigate possible causes of low idempotence and devise a method for improving idempotence through fine-tuning a codec model. We then examine the effect of idempotence on a simple conditional generative modeling task, and find that increased idempotence can be achieved without negatively impacting downstream modeling performance -- potentially extending the usefulness of neural codecs for practical file compression and iterative generative modeling workflows.more » « less
-
Deep learning for computer vision depends on lossy image compression: it reduces the storage required for training and test data and lowers transfer costs in deployment. Mainstream datasets and imaging pipelines all rely on standard JPEG compression. In JPEG, the degree of quantization of frequency coefficients controls the lossiness: an 8x8 quantization table (Q-table) decides both the quality of the encoded image and the compression ratio. While a long history of work has sought better Q-tables, existing work either seeks to minimize image distortion or to optimize for models of the human visual system. This work asks whether JPEG Q-tables exist that are “better” for specific vision networks and can offer better quality–size trade-offs than ones designed for human perception or minimal distortion. We reconstruct an ImageNet test set with higher resolution to explore the effect of JPEG compression under novel Q-tables. We attempt several approaches to tune a Q-table for a vision task. We find that a simple sorted random sampling method can exceed the performance of the standard JPEG Q-table. We also use hyper-parameter tuning techniques including bounded random search, Bayesian optimization, and composite heuristic optimization methods. The new Q-tables we obtained can improve the compression rate by 10% to 200% when the accuracy is fixed, or improve accuracy up to 2% at the same compression rate.more » « less
An official website of the United States government

