skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Feature and Instance Attribution to Detect Artifacts
Training the deep neural networks that dominate NLP requires large datasets. These are often collected automatically or via crowdsourcing, and may exhibit systematic biases or annotation artifacts. By the latter we mean spurious correlations between inputs and outputs that do not represent a generally held causal relationship between features and classes; models that exploit such correlations may appear to perform a given task well, but fail on out of sample data. In this paper, we evaluate use of different attribution methods for aiding identification of training data artifacts. We propose new hybrid approaches that combine saliency maps (which highlight important input features) with instance attribution methods (which retrieve training samples influential to a given prediction). We show that this proposed training-feature attribution can be used to efficiently uncover artifacts in training data when a challenging validation set is available. We also carry out a small user study to evaluate whether these methods are useful to NLP researchers in practice, with promising results. We make code for all methods and experiments in this paper available.  more » « less
Award ID(s):
2046873 2040989 2008956
PAR ID:
10347373
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics: ACL 2022
Page Range / eLocation ID:
1934 to 1946
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Training the large deep neural networks that dominate NLP requires large datasets. Many of these are collected automatically or via crowdsourcing, and may exhibit systematic biases or annotation artifacts. By the latter, we mean correlations between inputs and outputs that are spurious, insofar as they do not represent a generally held causal relationship between features and classes; models that exploit such correlations may appear to perform a given task well, but fail on out of sample data. In this paper we propose methods to facilitate identification of training data artifacts, using new hybrid approaches that combine saliency maps (which highlight important input features) with instance attribution methods (which retrieve training samples influential to a given prediction). We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data, and use it to identify previously unreported artifacts in a few standard NLP datasets. We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice, with promising results. We make code for all methods and experiments in this paper available. 
    more » « less
  2. null (Ed.)
    Widespread adoption of deep models has motivated a pressing need for approaches to interpret network outputs and to facilitate model debugging. Instance attribution methods constitute one means of accomplishing these goals by retrieving training instances that (may have) led to a particular prediction. Influence functions (IF; Koh and Liang 2017) provide machinery for doing this by quantifying the effect that perturbing individual train instances would have on a specific test prediction. However, even approximating the IF is computationally expensive, to the degree that may be prohibitive in many cases. Might simpler approaches (e.g., retrieving train examples most similar to a given test point) perform comparably? In this work, we evaluate the degree to which different potential instance attribution agree with respect to the importance of training samples. We find that simple retrieval methods yield training instances that differ from those identified via gradient-based methods (such as IFs), but that nonetheless exhibit desirable characteristics similar to more complex attribution methods. Code for all methods and experiments in this paper is available at: https://github.com/successar/instance_attributions_NLP. 
    more » « less
  3. Deep classifiers are known to rely on spurious features — patterns which are correlated with the target on the training data but not inherently relevant to the learning problem, such as the image backgrounds when classifying the foregrounds. In this paper we evaluate the amount of information about the core (non-spurious) features that can be decoded from the representations learned by standard empirical risk minimization (ERM) and specialized group robustness training. Following recent work on Deep Feature Reweighting (DFR), we evaluate the feature representations by re-training the last layer of the model on a held-out set where the spurious correlation is broken. On multiple vision and NLP problems, we show that the features learned by simple ERM are highly competitive with the features learned by specialized group robustness methods targeted at reducing the effect of spurious correlations. Moreover, we show that the quality of learned feature representations is greatly affected by the design decisions beyond the training method, such as the model architecture and pre-training strategy. On the other hand, we find that strong regularization is not necessary for learning high-quality feature representations. Finally, using insights from our analysis, we significantly improve upon the best results reported in the literature on the popular Waterbirds, CelebA hair color prediction and WILDS-FMOW problems, achieving 97\%, 92\% and 50\% worst-group accuracies, respectively. 
    more » « less
  4. Much recent work in NLP has documented dataset artifacts, bias, and spurious correlations between input features and output labels. However, how to tell which features have “spurious” instead of legitimate correlations is typically left unspecified. In this work we argue that for complex language understanding tasks, all simple feature correlations are spurious, and we formalize this notion into a class of problems which we call competency problems. For example, the word “amazing” on its own should not give information about a sentiment label independent of the context in which it appears, which could include negation, metaphor, sarcasm, etc. We theoretically analyze the difficulty of creating data for competency problems when human bias is taken into account, showing that realistic datasets will increasingly deviate from competency problems as dataset size increases. This analysis gives us a simple statistical test for dataset artifacts, which we use to show more subtle biases than were described in prior work, including demonstrating that models are inappropriately affected by these less extreme biases. Our theoretical treatment of this problem also allows us to analyze proposed solutions, such as making local edits to dataset instances, and to give recommendations for future data collection and model design efforts that target competency problems. 
    more » « less
  5. Cross-lingual transfer, where a high-resource transfer language is used to improve the accuracy of a low-resource task language, is now an invaluable tool for improving performance of natural language processing (NLP) on lowresource languages. However, given a particular task language, it is not clear which language to transfer from, and the standard strategy is to select languages based on ad hoc criteria, usually the intuition of the experimenter. Since a large number of features contribute to the success of cross-lingual transfer (including phylogenetic similarity, typological properties, lexical overlap, or size of available data), even the most enlightened experimenter rarely considers all these factors for the particular task at hand. In this paper, we consider this task of automatically selecting optimal transfer languages as a ranking problem, and build models that consider the aforementioned features to perform this prediction. In experiments on representative NLP tasks, we demonstrate that our model predicts good transfer languages much better than ad hoc baselines considering single features in isolation, and glean insights on what features are most informative for each different NLP tasks, which may inform future ad hoc selection even without use of our method. 
    more » « less