skip to main content


Search for: All records

Award ID contains: 2008956

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability methods because they do not know which explanation to choose and how to interpret the explanation. Here we address the challenge of using explainability methods by proposing TalkToModel: an interactive dialogue system that explains ML models through natural language conversations. TalkToModel consists of three components: an adaptive dialogue engine that interprets natural language and generates meaningful responses; an execution component that constructs the explanations used in the conversation; and a conversational interface. In real-world evaluations, 73% of healthcare workers agreed they would use TalkToModel over existing systems for understanding a disease prediction model, and 85% of ML professionals agreed TalkToModel was easier to use, demonstrating that TalkToModel is highly effective for model explainability.

     
    more » « less
  2. Bias amplification is a phenomenon in which models exacerbate biases or stereotypes present in the training data. In this paper, we study bias amplification in the text-to-image domain using Stable Diffusion by comparing gender ratios in training vs. generated images. We find that the model appears to amplify gender-occupation biases found in the training data (LAION) considerably. However, we discover that amplification can be largely attributed to discrepancies between training captions and model prompts. For example, an inherent difference is that captions from the training data often contain explicit gender information while our prompts do not, which leads to a distribution shift and consequently inflates bias measures. Once we account for distributional differences between texts used for training and generation when evaluating amplification, we observe that amplification decreases drastically. Our findings illustrate the challenges of comparing biases in models and their training data, as well as evaluation more broadly, and highlight how confounding factors can impact analyses. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  3. Large Language Models (LLMs) have demonstrated remarkable capabilities in performing complex tasks. Moreover, recent research has shown that incorporating human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context learning can significantly enhance the performance of these models, particularly on tasks that require reasoning capabilities. However, incorporating such rationales poses challenges in terms of scalability as this requires a high degree of human involvement. In this work, we present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY), which addresses the aforementioned challenges by automating the process of rationale generation. To this end, we leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions. More specifically, we construct automated natural language rationales that embed insights from post hoc explanations to provide corrective signals to LLMs. Extensive experimentation with real-world datasets demonstrates that our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks, including those where prior approaches which rely on human-annotated rationales such as Chain-of-Thought prompting fall short. Our work makes one of the first attempts at highlighting the potential of post hoc explanations as valuable tools for enhancing the effectiveness of LLMs. Furthermore, we conduct additional empirical analyses and ablation studies to demonstrate the impact of each of the components of AMPLIFY, which, in turn, lead to critical insights for refining in context learning. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Training the deep neural networks that dominate NLP requires large datasets. These are often collected automatically or via crowdsourcing, and may exhibit systematic biases or annotation artifacts. By the latter we mean spurious correlations between inputs and outputs that do not represent a generally held causal relationship between features and classes; models that exploit such correlations may appear to perform a given task well, but fail on out of sample data. In this paper, we evaluate use of different attribution methods for aiding identification of training data artifacts. We propose new hybrid approaches that combine saliency maps (which highlight important input features) with instance attribution methods (which retrieve training samples influential to a given prediction). We show that this proposed training-feature attribution can be used to efficiently uncover artifacts in training data when a challenging validation set is available. We also carry out a small user study to evaluate whether these methods are useful to NLP researchers in practice, with promising results. We make code for all methods and experiments in this paper available. 
    more » « less
  5. As practitioners increasingly deploy machine learning models in critical domains such as health care, finance, and policy, it becomes vital to ensure that domain experts function effectively alongside these models. Explainability is one way to bridge the gap between human decision-makers and machine learning models. However, most of the existing work on explainability focuses on one-off, static explanations like feature importances or rule lists. These sorts of explanations may not be sufficient for many use cases that require dynamic, continuous discovery from stakeholders. In the literature, few works ask decision-makers about the utility of existing explanations and other desiderata they would like to see in an explanation going forward. In this work, we address this gap and carry out a study where we interview doctors, healthcare professionals, and policymakers about their needs and desires for explanations. Our study indicates that decision-makers would strongly prefer interactive explanations in the form of natural language dialogues. Domain experts wish to treat machine learning models as "another colleague", i.e., one who can be held accountable by asking why they made a particular decision through expressive and accessible natural language interactions. Considering these needs, we outline a set of five principles researchers should follow when designing interactive explanations as a starting place for future work. Further, we show why natural language dialogues satisfy these principles and are a desirable way to build interactive explanations. Next, we provide a design of a dialogue system for explainability and discuss the risks, trade-offs, and research opportunities of building these systems. Overall, we hope our work serves as a starting place for researchers and engineers to design interactive explainability systems. 
    more » « less
  6. null (Ed.)
    Widespread adoption of deep models has motivated a pressing need for approaches to interpret network outputs and to facilitate model debugging. Instance attribution methods constitute one means of accomplishing these goals by retrieving training instances that (may have) led to a particular prediction. Influence functions (IF; Koh and Liang 2017) provide machinery for doing this by quantifying the effect that perturbing individual train instances would have on a specific test prediction. However, even approximating the IF is computationally expensive, to the degree that may be prohibitive in many cases. Might simpler approaches (e.g., retrieving train examples most similar to a given test point) perform comparably? In this work, we evaluate the degree to which different potential instance attribution agree with respect to the importance of training samples. We find that simple retrieval methods yield training instances that differ from those identified via gradient-based methods (such as IFs), but that nonetheless exhibit desirable characteristics similar to more complex attribution methods. Code for all methods and experiments in this paper is available at: https://github.com/successar/instance_attributions_NLP. 
    more » « less
  7. Counterfactual explanations are emerging as an attractive option for providing recourse to individuals adversely impacted by algorithmic decisions. As they are deployed in critical applications (e.g. law enforcement, financial lending), it becomes important to ensure that we clearly understand the vulnerabilties of these methods and find ways to address them. However, there is little understanding of the vulnerabilities and shortcomings of counterfactual explanations. In this work, we introduce the first framework that describes the vulnerabilities of counterfactual explanations and shows how they can be manipulated. More specifically, we show counterfactual explanations may converge to drastically different counterfactuals under a small perturbation indicating they are not robust. Leveraging this insight, we introduce a novel objective to train seemingly fair models where counterfactual explanations find much lower cost recourse under a slight perturbation. We describe how these models can unfairly provide low-cost recourse for specific subgroups in the data while appearing fair to auditors. We perform experiments on loan and violent crime prediction data sets where certain subgroups achieve up to 20x lower cost recourse under the perturbation. These results raise concerns regarding the dependability of current counterfactual explanation techniques, which we hope will inspire investigations in robust counterfactual explanations. 
    more » « less
  8. As black box explanations are increasingly being employed to establish model credibility in high stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by state-of-the-art techniques are inconsistent, unstable, and provide very little insight into their correctness and reliability. In addition, these methods are also computationally inefficient, and require significant hyper-parameter tuning. In this paper, we address the aforementioned challenges by developing a novel Bayesian framework for generating local explanations along with their associated uncertainty. We instantiate this framework to obtain Bayesian versions of LIME and KernelSHAP which output credible intervals for the feature importances, capturing the associated uncertainty. The resulting explanations not only enable us to make concrete inferences about their quality (e.g., there is a 95% chance that the feature importance lies within the given range), but are also highly consistent and stable. We carry out a detailed theoretical analysis that leverages the aforementioned uncertainty to estimate how many perturbations to sample, and how to sample for faster convergence. This work makes the first attempt at addressing several critical issues with popular explanation methods in one shot, thereby generating consistent, stable, and reliable explanations with guarantees in a computationally efficient manner. Experimental evaluation with multiple real world datasets and user studies demonstrate that the efficacy of the proposed framework. 
    more » « less