skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MLCNN: Cross-Layer Cooperative Optimization and Accelerator Architecture for Speeding Up Deep Learning Applications
The ever-increasing number of layers, millions of parameters, and large data volume make deep learning workloads resource-intensive and power-hungry. In this paper, we develop a convolutional neural network (CNN) acceleration framework, named MLCNN, which explores algorithm-hardware co-design to achieve cross-layer cooperative optimization and acceleration. MLCNN dramatically reduces computation and on-off chip communication, improving CNN’s performance. To achieve this, MLCNN reorders the position of nonlinear activation layers and pooling layers, which we prove results in a negligible accuracy loss; then the convolutional layer and pooling layer are cooptimized by means of redundant multiplication elimination, local addition reuse, and global addition reuse. To the best of our knowledge, MLCNN is the first of its kind that incorporates cooperative optimization across convolutional, activation, and pooling layers. We further customize the MLCNN accelerator to take full advantage of cross-layer CNN optimization to reduce both computation and on-off chip communication. Our analysis shows that MLCNN can significantly reduce (up to 98%) multiplications and additions. We have implemented a prototype of MLCNN and evaluated its performance on several widely used CNN models using both an accelerator-level cycle and energy model and RTL implementation. Experimental results show that MLCNN achieves 3.2× speedup and 2.9× energy efficiency compared with dense CNNs. MLCNN’s optimization methods are orthogonal to other CNN acceleration techniques, such as quantization and pruning. Combined with quantization, our quantized MLCNN gains a 12.8× speedup and 11.3× energy efficiency compared with DCNN.  more » « less
Award ID(s):
1828105
PAR ID:
10347481
Author(s) / Creator(s):
Date Published:
Journal Name:
2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generative Adversarial Networks (GANs) have recently drawn tremendous attention in many artificial intelligence (AI) applications including computer vision, speech recognition, and natural language processing. While GANs deliver state-of-the-art performance on these AI tasks, it comes at the cost of high computational complexity. Although recent progress demonstrated the promise of using ReRMA-based Process-In-Memory for acceleration of convolutional neural networks (CNNs) with low energy cost, the unique training process required by GANs makes them difficult to run on existing neural network acceleration platforms: two competing networks are simultaneously co-trained in GANs, and hence, significantly increasing the need of memory and computation resources. In this work, we propose ReGAN – a novel ReRAM-based Process-In-Memory accelerator that can efficiently reduce off-chip memory accesses. Moreover, ReGAN greatly increases system throughput by pipelining the layer-wise computation. Two techniques, namely, Spatial Parallelism and Computation Sharing are particularly proposed to further enhance training efficiency of GANs. Our experimental results show that ReGAN can achieve 240X performance speedup compared to GPU platform averagely, with an average energy saving of 94X. 
    more » « less
  2. With reduced data reuse and parallelism, recent convolutional neural networks (CNNs) create new challenges for FPGA acceleration. Systolic arrays (SAs) are efficient, scalable architectures for convolutional layers, but without proper optimizations, their efficiency drops dramatically for reasons: 1) the different dimensions within same-type layers, 2) the different convolution layers especially transposed and dilated convolutions, and 3) CNN’s complex dataflow graph. Furthermore, significant overheads arise when integrating FPGAs into machine learning frameworks. Therefore, we present a flexible, composable architecture called FlexCNN, which delivers high computation efficiency by employing dynamic tiling, layer fusion, and data layout optimizations. Additionally, we implement a novel versatile SA to process normal, transposed, and dilated convolutions efficiently. FlexCNN also uses a fully-pipelined software-hardware integration that alleviates the software overheads. Moreover, with an automated compilation flow, FlexCNN takes a CNN in the ONNX representation, performs a design space exploration, and generates an FPGA accelerator. The framework is tested using three complex CNNs: OpenPose, U-Net, and E-Net. The architecture optimizations achieve 2.3 × performance improvement. Compared to a standard SA, the versatile SA achieves close-to-ideal speedups, with up to 15.98 × and 13.42 × for transposed and dilated convolutions, with a 6% average area overhead. The pipelined integration leads to a 5 × speedup for OpenPose. 
    more » « less
  3. The continued growth in the processing power of FPGAs coupled with high bandwidth memories (HBM), makes systems like the Xilinx U280 credible platforms for linear solvers which often dominate the run time of scientific and engineering applications. In this paper, we present Callipepla, an accelerator for a preconditioned conjugate gradient linear solver (CG). FPGA acceleration of CG faces three challenges: (1) how to support an arbitrary problem and terminate acceleration processing on the fly, (2) how to coordinate long-vector data flow among processing modules, and (3) how to save off-chip memory bandwidth and maintain double (FP64) precision accuracy. To tackle the three challenges, we present (1) a stream-centric instruction set for efficient streaming processing and control, (2) vector streaming reuse (VSR) and decentralized vector flow scheduling to coordinate vector data flow among modules and further reduce off-chip memory access latency with a double memory channel design, and (3) a mixed precision scheme to save bandwidth yet still achieve effective double precision quality solutions. To the best of our knowledge, this is the first work to introduce the concept of VSR for data reusing between on-chip modules to reduce unnecessary off-chip accesses and enable modules working in parallel for FPGA accelerators. We prototype the accelerator on a Xilinx U280 HBM FPGA. Our evaluation shows that compared to the Xilinx HPC product, the XcgSolver, Callipepla achieves a speedup of 3.94×, 3.36× higher throughput, and 2.94× better energy efficiency. Compared to an NVIDIA A100 GPU which has 4× the memory bandwidth of Callipepla, we still achieve 77% of its throughput with 3.34× higher energy efficiency. The code is available at https://github.com/UCLA-VAST/Callipepla. 
    more » « less
  4. Recent algorithmic progression has brought competitive classification accuracy despite constraining neural networks to binary weights (+1/-1). These findings show remarkable optimization opportunities to eliminate the need for computationally-intensive multiplications, reducing memory access and storage. In this paper, we present ParaPIM architecture, which transforms current Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) sub-arrays to massively parallel computational units capable of running inferences for Binary-Weight Deep Neural Networks (BWNNs). ParaPIM's in-situ computing architecture can be leveraged to greatly reduce energy consumption dealing with convolutional layers, accelerate BWNNs inference, eliminate unnecessary off-chip accesses and provide ultra-high internal bandwidth. The device-to-architecture co-simulation results indicate ~4x higher energy efficiency and 7.3x speedup over recent processing-in-DRAM acceleration, or roughly 5x higher energy-efficiency and 20.5x speedup over recent ASIC approaches, while maintaining inference accuracy comparable to baseline designs. 
    more » « less
  5. Spiking neural networks (SNNs) offer a promising biologically-plausible computing model and lend themselves to ultra-low-power event-driven processing on neuromorphic processors. Compared with the conventional artificial neural networks, SNNs are well-suited for processing complex spatiotemporal data. Despite its significance, dataflow optimization of spiking neural accelerator architectures has not been extensively studied. Recognizing the need for efficient processing of complex spatiotemporal data while considering the all-or-none nature of spiking activities, we propose holistic reconfigurable dataflow optimization for systolic array acceleration of spiking convolutional networks (S-CNNs). A novel scheme is introduced for parallel acceleration of computation across multiple time points, which further allows for systemic optimization of variable tiling for a large performance and efficiency gains. We show how variable tiling, in particular, the positioning of the temporal dimension, can be targeted to optimize data movement, throughput, and energy efficiency. Furthermore, we explore joint layer-dependent dataflow and accelerator hardware optimization to further boost performance and energy efficiency. To support systemic design space exploration, we develop an SNN dataflow simulator capable of analyzing the throughput and energy dissipation of systolic array accelerators for any targeted S-CNN while considering the inherent spatiotemporal characteristics of spiking neural computation. The proposed techniques deliver orders of magnitude of improvements on throughput, energy efficiency, and delay-energy product for accelerating deep Alexnet and VGG-16 SNNs. 
    more » « less