Recent experimental results have demonstrated that zwitterionic ionogel comprised of polyzwitterion (polyZI)-supported lithium salt-doped ionic liquid exhibits improved conductivities and lithium transference numbers than the salt-doped base ionic liquid electrolyte (ILE). However, the underlying mechanisms of such observations remain unresolved. In this work, we pursued a systematic investigation to understand the impact of the polyZI content and salt concentration on the structural and dynamic properties of the poly(MPC) ionogel of our model polyZI ionogel, poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] supported LiTFSI/N-butyl-N-methylpyrrolidinium TFSI base ionic liquid electrolyte. Our structural analyses show strong lithium–ZI interaction consistent with the physical network characteristic observed in the experiments. An increase in polyZI content leads to an increased fraction of Li+ ions coordinated with the polyZI. In contrast, an increase in salt concentration leads to a decreased fraction of Li+ ions coordinated with the polyZI. The diffusivities of the mobile ions in the poly(MPC) ionogel were found to be lower than the base ILE in agreement with experiments at T > 300 K. Analysis of ion transport mechanisms shows that lithium ions within the poly(MPC) ionogel travel via a combination of structural, vehicular diffusion, as well as hopping mechanism. Finally, the conductivity trend crossover between the poly(MPC) ionogel and the base ILE was rationalized via a temperature study that showed that the base ILE ions are influenced more by the variation of temperature when compared to the poly(MPC) ions.
more »
« less
Investigating miscibility and lithium ion transport in blends of poly(ethylene oxide) with a polyanion containing precisely-spaced delocalized charges
A novel precision single-ion conductor with phenylsulfonyl(trifluoromethylsulfonyl)imide lithium salt covalently bound to every fifth carbon of a polyethylene backbone, p5PhTFSI-Li, was synthesized via ring opening metathesis polymerization (ROMP) followed by post polymerization modification. The conversion of poly(4-phenylcyclopentene), bearing 94% sulfonate anions, to trifluoromethanesulfonimide (TFSI) anions was highly efficient (∼90%) as determined by 19 F NMR analysis and corroborated through other spectroscopic methods. The flexible hydrocarbon backbone combined with a bulky TFSI anion led to an observable glass transition temperature of 199 °C even at these high levels of ionization. A high thermal stability up to 375 °C was also observed. Blending of p5PhTFSI-Li with poly(ethylene oxide) at various compositions was performed to investigate electrochemical performance and transference numbers with respect to the lithium electrode using a combination of impedance and polarization methods. At 90 °C and a 50 : 50 wt% blend composition, this system displayed the highest reported conductivity (2.00 × 10 −4 S cm −1 ) of a system with a demonstrated lithium-ion transference number near unity. Such performance is also atypical of single ion conductors produced through post-polymerization modification, which we attribute to the high yield of TFSI conversion. Investigations into the complex miscibility and phase behavior of these blends at various compositions was also probed by a combination of microscopy and differential scanning calorimetry, which is discussed with reference to computational predictions of how charge correlations affect polymer blend phase behavior.
more »
« less
- Award ID(s):
- 1804871
- PAR ID:
- 10347578
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 13
- Issue:
- 29
- ISSN:
- 1759-9954
- Page Range / eLocation ID:
- 4309 to 4323
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Single‐ion conducting polymer electrolytes are of interest for use with advanced battery electrodes such as lithium metal, but achieving sufficiently high conductivity has been challenging. In this work, a model system containing charged sites that are precisely spaced along the polymer backbone is explored. Precision sulfonated poly(4‐phenylcyclopentene) lithium salt (p5PhS‐Li) with a high degree of sulfonation (> 90%) is synthesized and blended with poly(ethylene oxide) (PEO) to investigate the thermodynamic and transport properties. Melting point depression is measured via differential scanning calorimetry, ionic conductivity,κ, is determined using electrochemical impedance spectroscopy, and the fraction of current carried by Li+is estimated based on steady‐state current measurements. In conjunction with a density measurement, melting point depression is used to find an effective Flory–Huggins interaction parameter,χeff= − 0.21, suggesting miscibility of the blend.κspans a large range from 2 × 10−11to 2 × 10−7S cm−1over the composition and temperature range investigated. The fraction of charge carried by lithium ions also spans a significant range from 0.12 in majority PEO blend to 0.98 in majorityp5PhS‐Li blend. This study addresses several limitations of sulfonated polystyrene and opens up the possibility of precisely controlling the spacing of other anion types.more » « less
-
Solid-state single-ion conducting polymer electrolytes have drawn considerable interest for secondary lithium batteries due to their potential for high electrochemical stability and safety, but applications are limited by their low ionic conductivities. Specifically, poly(ethylene oxide) (PEO) based electrolytes have the highest reported Li + conductivities for these materials; however, their potential is limited due to the ion transport mechanism being coupled to segmental relaxations of the cation solvating polymer chain. To investigate the potential of single-ion conducting polymer electrolytes lacking polar matrices, we synthesized three para -polyphenylene-based, side-chain polymer electrolytes with various pendent anion chemistries (–SO 3 − , –PSI − , and –TFSI − ) with differing binding affinities to Li + . Compared with the previously reported lithium poly(4-styrenesulfonyl(trifluoromethylsulfonyl)imide) (LiPSTFSI), the side-chain polymers showed at least 3 orders of magnitude higher conductivity with the same –TFSI − anion (6.7 × 10 −6 S cm −1 compared with 1.2 × 10 −10 S cm −1 at 150 °C). We found that the side-chain electrolyte showed a dielectric relaxation dominated transport mechanism through use of dielectric spectroscopy analysis. The conductivity is highly dependent on the charge delocalization and size of the pendent anion, which provides a pathway forward for the engineering of polymeric ion conductors for electrochemical applications.more » « less
-
Gardas, Ramesh L. (Ed.)The solvation structure and transport properties of Li+ in ionic liquid (IL) electrolytes based on n-methyl-n-butylpyrrolidinium cyano(trifluoromethanesulfonyl)imide [PYR14][CTFSI] and [Li][CTFSI] (0 ≤ xLi ≤ 0.7) were studied by Raman and Nuclear Magnetic Resonance (NMR) diffusometry, and molecular dynamics (MD) simulations. At xLi < 0.3, Li+ coordination is dominated by the cyano group. As xLi is increased, free cyano-sites become limited, resulting in increased coordination via the sulfonyl group. The 1:1 mixture of the symmetric anions bis(trifluoromethanesulfonyl)imide ([TFSI]) and dicyanamide ([DCA]) results in similar physical properties as the IL with [CTFSI]. However, anion asymmetry is shown to increase Li-salt solubility and promote Li+ transference. The lifetimes of Li+-cyano coordination for [CTFSI] are calculated to be shorter than those for [DCA], indicating that the competition from the sulfonyl group weakens its solvation with Li+. This resulted in higher Li+ transference for the electrolyte with [CTFSI]. In relation to the utility of these electrolytes in energy storage, the Li–LiFePO4 half cells assembled with IL electrolyte (xLi = 0.3, 0.5, and 0.7) demonstrated a nominal capacity of 140 mAh/g at 0.1C rate and 90 °C where the cell with xLi = 0.7 IL electrolyte demonstrated 61% capacity retention after 100 cycles and superior rate capability owing to increased electrochemical stability.more » « less
-
Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li 3/8 Sr 7/16 Ta 3/4 Zr 1/4 O 3 composite electrolyte with a Li-ion conductivity of 5.4 × 10 −5 and 3.5 × 10 −4 S cm −1 at 25 and 45 °C, respectively; the strong interaction between the F − of TFSI − (bis-trifluoromethanesulfonimide) and the surface Ta 5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm −2 . A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO 4 and high-voltage Li|LiNi 0.8 Mn 0.1 Co 0.1 O 2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability.more » « less
An official website of the United States government

