skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diffractive chips for magneto-optical trapping of two atomic species
We investigate diffractive grating chips that can be used as part of a magneto-optical trap (MOT) to trap both Rb and Cs atoms with a single input beam for each atom species.  more » « less
Award ID(s):
1839176
PAR ID:
10347692
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference on Lasers and Electro-Optics, OSA Technical Digest
Page Range / eLocation ID:
STh4G.7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precise and accurate atomic mass data provide crucial information for applications in a wide range of fields in physics and beyond, including astrophysics, nuclear structure, particle and neutrino physics, fundamental symmetries, chemistry, and metrology. The most precise atomic mass measurements are performed on charged particles confined in a Penning trap. Here, we describe the development, status, and outlook of CHIP-TRAP: the Central Michigan University high-precision Penning trap. CHIP-TRAP aims to perform ultra-high precision (∼1 part in 1011 fractional precision) mass measurements on stable and long-lived isotopes produced with external ion sources and transported to the Penning traps. Along the way, ions of a particular m/q are selected with a multi-reflection time-of-flight mass separator (MR-TOF-MS), with further filtering performed in a cylindrical capture trap before the ions are transported to a pair of hyperbolic measurement traps. In this paper, we report on the design and status of CHIP-TRAP and present results from the commissioning of the ion sources, MR-TOF-MS, and capture trap. We also provide an outlook on the continued development and commissioning of CHIP-TRAP. 
    more » « less
  2. We describe an inexpensive and accessible instructional setup that explores particle trapping with a planar linear ion trap. The planar trap is constructed using standard printed circuit board manufacturing and is designed to trap macroscopic charged particles in air. Trapping, shuttling, and splitting are demonstrated to students using these particles, which are visible to the naked eye. Students control trap voltages and can compare properties of particle motion with an analytic model of the trap using a computer vision program for particle tracking. Learning outcomes include understanding the design considerations for planar AC traps, mechanisms underpinning particle ejection, the physics of micromotion, and methods of data analysis using standard computer vision libraries. 
    more » « less
  3. We investigate the structural properties and melting behaviors of two-dimensional ion crystals in an RF trap, focusing on the effects of ion temperature and trap potential symmetry. We identify distinct crystal structures that form under varying trapping conditions and temperatures through experimental observations and theoretical analyses. As the temperature increases or the trap potential becomes more symmetric, we observe a transition from a lattice arrangement to elongated ring-like formations aligned along the trap axes. Our experimental and theoretical efforts enhance our understanding of phase transitions in low-dimensional, confined systems, offering insights into the controlled formation of quantum crystals for applications in quantum simulations and many-body physics. 
    more » « less
  4. Abstract SNAPSHOT USA is a multicontributor, long‐term camera trap survey designed to survey mammals across the United States. Participants are recruited through community networks and directly through a website application (https://www.snapshot-usa.org/). The growing Snapshot dataset is useful, for example, for tracking wildlife population responses to land use, land cover, and climate changes across spatial and temporal scales. Here we present the SNAPSHOT USA 2021 dataset, the third national camera trap survey across the US. Data were collected across 109 camera trap arrays and included 1711 camera sites. The total effort equaled 71,519 camera trap nights and resulted in 172,507 sequences of animal observations. Sampling effort varied among camera trap arrays, with a minimum of 126 camera trap nights, a maximum of 3355 nights, a median 546 nights, and a mean 656 ± 431 nights. This third dataset comprises 51 camera trap arrays that were surveyed during 2019, 2020, and 2021, along with 71 camera trap arrays that were surveyed in 2020 and 2021. All raw data and accompanying metadata are stored on Wildlife Insights (https://www.wildlifeinsights.org/), and are publicly available upon acceptance of the data papers. SNAPSHOT USA aims to sample multiple ecoregions in the United States with adequate representation of each ecoregion according to its relative size. Currently, the relative density of camera trap arrays varies by an order of magnitude for the various ecoregions (0.22–5.9 arrays per 100,000 km2), emphasizing the need to increase sampling effort by further recruiting and retaining contributors. There are no copyright restrictions on these data. We request that authors cite this paper when using these data, or a subset of these data, for publication. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. 
    more » « less
  5. Abstract Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap‐derived Big Data are becoming increasingly solvable with the help of scalable cyber‐infrastructures, harmonization and exchange of the data remain limited, hindering its full potential. There is currently no widely accepted standard for exchanging camera trap data. The only existing proposal, “Camera Trap Metadata Standard” (CTMS), has several technical shortcomings and limited adoption. We present a new data exchange format, the Camera Trap Data Package (Camtrap DP), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP structures camera trap data in a simple yet flexible data model consisting of three tables (Deployments, Media and Observations) that supports a wide range of camera deployment designs, classification techniques (e.g., human and AI, media‐based and event‐based) and analytical use cases, from compiling species occurrence data through distribution, occupancy and activity modeling to density estimation. The format further achieves interoperability by building upon existing standards, Frictionless Data Package in particular, which is supported by a suite of open software tools to read and validate data. Camtrap DP is the consensus of a long, in‐depth, consultation and outreach process with standard and software developers, the main existing camera trap data management platforms, major players in the field of camera trapping and the Global Biodiversity Information Facility (GBIF). Under the umbrella of the Biodiversity Information Standards (TDWG), Camtrap DP has been developed openly, collaboratively and with version control from the start. We encourage camera trapping users and developers to join the discussion and contribute to the further development and adoption of this standard. 
    more » « less