skip to main content


Title: Efficient Protocol Testing Under Temporal Uncertain Event Using Discrete-event Network Simulations
Testing network protocol implementations is difficult mainly because of the temporal uncertain nature of network events. To evaluate the worst-case performance or detect the bugs of a network protocol implementation using network simulators, we need to systematically simulate the behavior of the network protocol under all possible cases of the temporal uncertain events, which is time consuming. The recently proposed Symbolic Execution based Interval Branching (SEIB) simulates a group of uncertain cases together in a single simulation branch and thus is more efficient than brute force testing. In this article, we argue that the efficiency of SEIB could be further significantly improved by eliminating unnecessary comparisons of the event timestamps. Specifically, we summarize and present three general types of unnecessary comparisons when SEIB is applied to a general network simulator, and then correspondingly propose three novel techniques to eliminate them. Our extensive simulations show that our techniques can improve the efficiency of SEIB by several orders of magnitude, such as from days to minutes.  more » « less
Award ID(s):
1918204
NSF-PAR ID:
10347701
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Modeling and Computer Simulation
Volume:
32
Issue:
2
ISSN:
1049-3301
Page Range / eLocation ID:
1 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  2. Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern when accessing sensitive data on a remote server. It is known that there exists a logarithmic communication lower bound on any passive ORAM construction, where the server only acts as the storage service. This overhead, however, was shown costly for some applications. Several active ORAM schemes with server computation have been proposed to overcome this limitation. However, they mostly rely on costly homomorphic encryptions, whose performance is worse than passive ORAM. In this article, we propose S3ORAM, a new multi-server ORAM framework, which featuresO(1) client bandwidth blowup and low client storage without relying on costly cryptographic primitives. Our key idea is to harness Shamir Secret Sharing and a multi-party multiplication protocol on applicable binary tree-ORAM paradigms. This strategy allows the client to instruct the server(s) to perform secure and efficient computation on his/her behalf with a low intervention thereby, achieving a constant client bandwidth blowup and low server computational overhead. Our framework can also work atop a generalk-ary tree ORAM structure (k≥ 2). We fully implemented our framework, and strictly evaluated its performance on a commodity cloud platform (Amazon EC2). Our comprehensive experiments confirmed the efficiency of S3ORAM framework, where it is approximately 10× faster than the most efficient passive ORAM (i.e., Path-ORAM) for a moderate network bandwidth while being three orders of magnitude faster than active ORAM withO(1) bandwidth blowup (i.e., Onion-ORAM). We have open-sourced the implementation of our framework for public testing and adaptation.

     
    more » « less
  3. Abstract

    Phylogenetic studies of geographic range evolution are increasingly using statistical model selection methods to choose among variants of the dispersal‐extinction‐cladogenesis (DEC) model, especially betweenDECandDEC+J, a variant that emphasizes “jump dispersal,” or founder‐event speciation, as a type of cladogenetic range inheritance scenario. Unfortunately,DEC+J is a poor model of founder‐event speciation, and statistical comparisons of its likelihood withDECare inappropriate.DECandDEC+J share a conceptual flaw: cladogenetic events of range inheritance at ancestral nodes, unlike anagenetic events of dispersal and local extinction along branches, are not modelled as being probabilistic with respect to time. Ignoring this probability factor artificially inflates the contribution of cladogenetic events to the likelihood, and leads to underestimates of anagenetic, time‐dependent range evolution. The flaw is exacerbated inDEC+J because not only is jump dispersal allowed, expanding the set of cladogenetic events, its probability relative to non‐jump events is assigned a free parameter,j, that when maximized precludes the possibility of non‐jump events at ancestral nodes.DEC+J thus parameterizes themodeof speciation, but likeDEC, it does not parameterize therateof speciation. This inconsistency has undesirable consequences, such as a greater tendency towards degenerate inferences in which the data are explained entirely by cladogenetic events (at which point branch lengths become irrelevant, with estimated anagenetic rates of 0). Inferences withDEC+J can in some cases depart dramatically from intuition, e.g. when highly unparsimonious numbers of jump dispersal events are required solely becausejis maximized. Statistical comparison withDECis inappropriate because a higherDEC+J likelihood does not reflect a more close approximation of the “true” model of range evolution, which surely must include time‐dependent processes; instead, it is simply due to more weight being allocated (viaj) to jump dispersal events whose time‐dependent probabilities are ignored. In testing hypotheses about the geographic mode of speciation, jump dispersal can and should instead be modelled using existing frameworks for state‐dependent lineage diversification in continuous time, taking appropriate cautions against Type I errors associated with such methods. For simple inference of ancestral ranges on a fixed phylogeny, aDEC‐based model may be defensible if statistical model selection is not used to justify the choice, and it is understood that inferences about cladogenetic range inheritance lack any relation to time, normally a fundamental axis of evolutionary models.

     
    more » « less
  4. Private Set Union (PSU) allows two players, the sender and the receiver, to compute the union of their input datasets with- out revealing any more information than the result. While it has found numerous applications in practice, not much re- search has been carried out so far, especially for large datasets. In this work, we take shuffling technique as a key to de- sign PSU protocols for the first time. By shuffling receiver’s set, we put forward the first protocol, denoted as ΠRPSU, that eliminates the expensive operations in previous works, such as additive homomorphic encryption and repeated operations on the receiver’s set. It outperforms the state-of-the-art design by Kolesnikov et al. (ASIACRYPT 2019) in both efficiency and security; the unnecessary leakage in Kolesnikov et al.’s design, can be avoided in our design. We further extend our investigation to the application sce- narios in which both players may hold unbalanced input datasets. We propose our second protocol ΠSPSU, by shuffling the sender’s dataset. This design can be viewed as a dual ver- sion of our first protocol, and it is suitable in the cases where the sender’s input size is much smaller than the receiver’s. Finally, we implement our protocols ΠRPSU and ΠSPSU in C++ on big datasets, and perform a comprehensive evaluation in terms of both scalability and parallelizability. The results demonstrate that our design can obtain a 4-5× improvement over the state-of-the-art by Kolesnikov et al. with a single thread in WAN/LAN settings. 
    more » « less
  5. Private Set Union (PSU) allows two players, the sender and the receiver, to compute the union of their input datasets with- out revealing any more information than the result. While it has found numerous applications in practice, not much research has been carried out so far, especially for large datasets. In this work, we take shuffling technique as a key to design PSU protocols for the first time. By shuffling receiver’s set, we put forward the first protocol, denoted as $\Pi^R_{PSU}$, that eliminates the expensive operations in previous works, such as additive homomorphic encryption and repeated operations on the receiver’s set. It outperforms the state-of-the-art design by Kolesnikov et al. (ASIACRYPT 2019) in both efficiency and security; the unnecessary leakage in Kolesnikov et al.’s design, can be avoided in our design. We further extend our investigation to the application scenarios in which both players may hold unbalanced input datasets. We propose our second protocol $\Pi^S_{PSU}$, by shuffling the sender’s dataset. This design can be viewed as a dual version of our first protocol, and it is suitable in the cases where the sender’s input size is much smaller than the receiver’s. Finally, we implement our protocols $\Pi^R_{PSU}$ and $\Pi^S_{PSU}$ in C++ on big datasets, and perform a comprehensive evaluation in terms of both scalability and parallelizability. The results demonstrate that our design can obtain a 4-5X improvement over the state-of-the-art by Kolesnikov et al. with a single thread in WAN/LAN settings. 
    more » « less