skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sterile Neutrino/Dark Fermion Dark Matter: Searches in the X-Ray Sky, the Nuclear Physics Laboratory and in Galaxy Formation
The possibility of dark matter being a particle involved in the generation of neutrino mass has been of interest for over 25 years. Sterile neutrinos—or in the contemporary parlance—dark fermions, are among the simplest and most cited particles which can provide a mechanism for neutrino mass. If one particle of this class has a small mixing, it can be quasi-thermally or nonthermally produced in the early Universe, affect cosmological structure formation, and be detected by X-ray telescopes or laboratory nuclear experiments. A candidate line was detected in 2014, and I review the status of the line and its implications for galaxy formation, proposals for future observations, and laboratory detection.  more » « less
Award ID(s):
1915005
PAR ID:
10347853
Author(s) / Creator(s):
Date Published:
Journal Name:
Astrophysics and space science proceedings
ISSN:
1570-6591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a new technique for sub-GeV dark matter (DM) searches and a new use of neutrino observatories. DM-electron scattering in an observatory can excite or ionize target molecules, which then produce light that can be detected by the photomultiplier tubes (PMTs). While individual DM scatterings are indistinguishable, the aggregate rate from many independent scatterings can be isolated from the total PMT dark rate using the expected DM annual modulation. We showcase this technique with the example of JUNO, a 20 000-ton scintillator detector, showing that its potential sensitivity in some mass ranges exceeds other techniques and reaches key particle-theory benchmarks. 
    more » « less
  2. Composite asymmetric dark matter (ADM) is the framework that naturally explains the coincidence of the baryon density and the dark matter density of the Universe. Through a portal interaction sharing particle-antiparticle asymmetries in the Standard Model and dark sectors, dark matter particles, which are dark-sector counterparts of baryons, can decay into antineutrinos and dark-sector counterparts of mesons (dark mesons) or dark photon. Subsequent cascade decay of the dark mesons and the dark photon can also provide electromagnetic fluxes at late times of the Universe. The cosmic-ray constraints on the decaying dark matter with the mass of 1–10 GeV has not been well studied. We perform comprehensive studies on the decay of the composite ADM by combining the astrophysical constraints from e ± and γ ray. The constraints from cosmic-ray positron measurements by AMS-02 are the most stringent at 2 GeV : a lifetime should be larger than the order of 10 26 s , corresponding to the cutoff scale of the portal interaction of about 10 8 10 9 GeV . We also perform the dedicated analysis for the neutrino monoenergetic signals at Super-Kamiokande and Hyper-Kamiokande due to the atmospheric neutrino background in the energy range of our interest. 
    more » « less
  3. Abstract Any dark matter spikes surrounding black holes in our Galaxy are sites of significant dark matter annihilation, leading to a potentially detectable neutrino signal. In this paper we examine 10 - 10 5 M ⊙ black holes associated with dark matter spikes that formed in early minihalos and still exist in our Milky Way Galaxy today, in light of neutrino data from the ANTARES [1] and IceCube [2] detectors. In various regions of the sky, we determine the minimum distance away from the solar system that a dark matter spike must be in order to have not been detected as a neutrino point source for a variety of representative dark matter annihilation channels. Given these constraints on the distribution of dark matter spikes in the Galaxy, we place significant limits on the formation of the first generation of stars in early minihalos — stronger than previous limits from gamma-ray searches in Fermi Gamma-Ray Space Telescope data. The larger black holes considered in this paper may arise as the remnants of Dark Stars after the dark matter fuel is exhausted; thus neutrino observations may be used to constrain the properties of Dark Stars. The limits are particularly strong for heavier WIMPs. For WIMP masses ∼ 5TeV, we show that ≲ 10 % of minihalos can host first stars that collapse into BHs larger than 10 3 M ⊙ . 
    more » « less
  4. The neutrinos in the diffuse supernova neutrino background (DSNB) travel over cosmological distances and this provides them with an excellent opportunity to interact with dark relics. We show that a cosmologically significant relic population of keV-mass sterile neutrinos with strong self-interactions could imprint their presence in the DSNB. The signatures of the self-interactions would be “dips” in the otherwise smooth DSNB spectrum. Upcoming large-scale neutrino detectors, for example Hyper-Kamiokande, have a good chance of detecting the DSNB and these dips. If no dips are detected, this method serves as an independent constraint on the sterile neutrino self-interaction strength and mixing with active neutrinos. We show that relic sterile neutrino parameters that evade x-ray and structure bounds may nevertheless be testable by future detectors like TRISTAN, but may also produce dips in the DSNB which could be detectable. Such a detection would suggest the existence of a cosmologically significant, strongly self-interacting sterile neutrino background, likely embedded in a richer dark sector. 
    more » « less
  5. Abstract The flux of neutrinos from annihilation of gravitationally captured dark matter in the Sun has significant constraints from direct-detection experiments. However, these constraints are relaxed for inelastic dark matter as inelastic dark matter interactions generate less energetic nuclear recoils compared to elastic dark matter interactions. In this paper, we explore the possibility for large volume underground neutrino experiments to detect the neutrino flux from captured inelastic dark matter in the Sun. The neutrino spectrum has two components: a mono-energetic “spike” from pion and kaon decays at rest and a broad-spectrum “shoulder” from prompt primary meson decays. We focus on detecting the shoulder neutrinos from annihilation of hadrophilic inelastic dark matter with masses in the range 4–100 GeV and the mass splittings in up to 300 keV. We determine the event selection criterion for DUNE to identify GeV-scale muon neutrinos and anti-neutrinos originating from hadrophilic dark matter annihilation in the Sun, and forecast the sensitivity from contained events. We also map the current bounds from Super-Kamiokande and IceCube on elastic dark matter, as well as the projected limits from Hyper-Kamiokande, to the parameter space of inelastic dark matter. We find that there is a region of parameter space that these neutrino experiments are more sensitive to than the direct-detection experiments. For dark matter annihilation to heavy-quarks, the projected sensitivity of DUNE is weaker than current (future) Super (Hyper) Kamiokande experiments. However, for the light-quark channel, only the spike is observable and DUNE will be the most sensitive experiment. 
    more » « less