skip to main content


Title: Constraining bright optical counterparts of fast radio bursts
Context. Fast radio bursts (FRBs) are extremely energetic pulses of millisecond duration and unknown origin. To understand the phenomenon that emits these pulses, targeted and un-targeted searches have been performed for multiwavelength counterparts, including the optical. Aims. The objective of this work is to search for optical transients at the positions of eight well-localized (< 1″) FRBs after the arrival of the burst on different timescales (typically at one day, several months, and one year after FRB detection). We then compare this with known optical light curves to constrain progenitor models. Methods. We used the Las Cumbres Observatory Global Telescope (LCOGT) network to promptly take images with its network of 23 telescopes working around the world. We used a template subtraction technique to analyze all the images collected at differing epochs. We have divided the difference images into two groups: In one group we use the image of the last epoch as a template, and in the other group we use the image of the first epoch as a template. We then searched for optical transients at the localizations of the FRBs in the template subtracted images. Results. We have found no optical transients and have therefore set limiting magnitudes to the optical counterparts. Typical limits in apparent and absolute magnitudes for our LCOGT data are ∼22 and −19 mag in the r band, respectively. We have compared our limiting magnitudes with light curves of super-luminous supernovae (SLSNe), Type Ia supernovae (SNe Ia), supernovae associated with gamma-ray bursts (GRB-SNe), a kilonova, and tidal disruption events (TDEs). Conclusions. Assuming that the FRB emission coincides with the time of explosion of these transients, we rule out associations with SLSNe (at the ∼99.9% confidence level) and the brightest subtypes of SNe Ia, GRB-SNe, and TDEs (at a similar confidence level). However, we cannot exclude scenarios where FRBs are directly associated with the faintest of these subtypes or with kilonovae.  more » « less
Award ID(s):
1911140 1910471
NSF-PAR ID:
10347989
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
653
ISSN:
0004-6361
Page Range / eLocation ID:
A119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The 5-yr Dark Energy Survey Supernova Programme (DES-SN) is one of the largest and deepest transient surveys to date in terms of volume and number of supernovae. Identifying and characterizing the host galaxies of transients plays a key role in their classification, the study of their formation mechanisms, and the cosmological analyses. To derive accurate host galaxy properties, we create depth-optimized coadds using single-epoch DES-SN images that are selected based on sky and atmospheric conditions. For each of the five DES-SN seasons, a separate coadd is made from the other four seasons such that each SN has a corresponding deep coadd with no contaminating SN emission. The coadds reach limiting magnitudes of order ∼27 in g band, and have a much smaller magnitude uncertainty than the previous DES-SN host templates, particularly for faint objects. We present the resulting multiband photometry of host galaxies for samples of spectroscopically confirmed type Ia (SNe Ia), core-collapse (CCSNe), and superluminous (SLSNe) as well as rapidly evolving transients (RETs) discovered by DES-SN. We derive host galaxy stellar masses and probabilistically compare stellar-mass distributions to samples from other surveys. We find that the DES spectroscopically confirmed sample of SNe Ia selects preferentially fewer high-mass hosts at high-redshift compared to other surveys, while at low redshift the distributions are consistent. DES CCSNe and SLSNe hosts are similar to other samples, while RET hosts are unlike the hosts of any other transients, although these differences have not been disentangled from selection effects. 
    more » « less
  2. In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. To increase the sensitivity of detecting counterparts of transient or variable sources by telescopes with a limited field of view, IceCube began releasing alerts for single high-energy ( E ν  >  60 TeV) neutrino detections with sky localisation regions of order 1° radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016–2017 to search for any optical transients that may be related to the neutrinos. Typically 10–20 faint ( m i P1  ≲ 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp, or other peculiar light curve and physical properties. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∼50%), we found a SN PS16cgx, located at 10.0′ from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at redshift z  = 0.2895 ± 0.0001. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak Si  II absorption and a fairly normal rest-frame r -band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5 σ limiting magnitude of m i P1  ≈ 22 mag, between 1 day and 25 days after detection. 
    more » « less
  3. ABSTRACT The analogy of the host galaxy of the repeating fast radio burst (FRB) source FRB 121102 and those of long gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe) has led to the suggestion that young magnetars born in GRBs and SLSNe could be the central engine of repeating FRBs. We test such a hypothesis by performing dedicated observations of the remnants of six GRBs with evidence of having a magnetar central engine using the Arecibo telescope and the Robert C. Byrd Green Bank Telescope (GBT). A total of ∼20 h of observations of these sources did not detect any FRB from these remnants. Under the assumptions that all these GRBs left behind a long-lived magnetar and that the bursting rate of FRB 121102 is typical for a magnetar FRB engine, we estimate a non-detection probability of 8.9 × 10−6. Even though these non-detections cannot exclude the young magnetar model of FRBs, we place constraints on the burst rate and luminosity function of FRBs from these GRB targets. 
    more » « less
  4. ABSTRACT

    We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013–2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped ∼40 per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs), and 203 other transients, including supernovae (SNe). We stack our ACT observations to increase the signal-to-noise ratio of the maps. In all cases but one, we do not detect these transients in the ACT data. The single candidate detection (event AT2019ppm), seen at ∼5σ significance in our data, appears to be due to active galactic nuclei activity in the host galaxy coincident with a transient alert. For each source in our search we provide flux upper limits. For example, the medians for the 95 per cent confidence upper limits at 98 GHz are 15, 18, and 16 mJy for GRBs, SNe, and TDEs, respectively, in the first month after discovery. The projected sensitivity of future wide-area cosmic microwave background surveys should be sufficient to detect many of these events using the methods described in this paper.

     
    more » « less
  5. Abstract We present a multiwavelength photometric and spectroscopic analysis of 13 super-Chandrasekhar-mass/2003fg-like Type Ia supernovae (SNe Ia). Nine of these objects were observed by the Carnegie Supernova Project. The 2003fg-like SNe have slowly declining light curves (Δ m 15 ( B ) < 1.3 mag), and peak absolute B -band magnitudes of −19 < M B < −21 mag. Many of the 2003fg-like SNe are located in the same part of the luminosity–width relation as normal SNe Ia. In the optical B and V bands, the 2003fg-like SNe look like normal SNe Ia, but at redder wavelengths they diverge. Unlike other luminous SNe Ia, the 2003fg-like SNe generally have only one i -band maximum, which peaks after the epoch of the B -band maximum, while their near-IR (NIR) light-curve rise times can be ≳40 days longer than those of normal SNe Ia. They are also at least 1 mag brighter in the NIR bands than normal SNe Ia, peaking above M H = −19 mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark-energy experiments. Spectroscopically, the 2003fg-like SNe exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000–12,000 km s −1 ) in Si ii λ 6355 velocities at maximum light with no rapid early velocity decline, and no clear H -band break at +10 days. We find that SNe with a larger pseudo-equivalent width of C ii at maximum light have lower Si ii λ 6355 velocities and more slowly declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like SNe. The explosion of a C–O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core-degenerate scenario. 
    more » « less