Abstract Although challenging, assembling and orienting non-spherical nanomaterials into two- and three-dimensional (2D and 3D) ordered arrays can facilitate versatile collective properties by virtue of their shape-dependent properties that cannot be realized with their spherical counterparts. Here, we report on the self-assembly of gold nanorods (AuNRs) into 2D films at the vapor/liquid interface facilitated by grafting them with poly(ethylene glycol) (PEG). Using surface sensitive synchrotron grazing incidence small angle X-ray scattering (GISAXS) and specular X-ray reflectivity (XRR), we show that PEG-AuNRs in aqueous suspensions migrate to the vapor/liquid interface in the presence of salt, forming a uniform monolayer with planar-to-surface orientation. Furthermore, the 2D assembled PEG functionalized AuNRs exhibit short range order into rectangular symmetry with side-by-side and tail-to-tail nearest-neighbor packing. The effect of PEG chain length and salt concentration on the 2D assembly are also reported.
more »
« less
Direction Finding with 2D Arrays Using Spatial Sigma-Delta ADCs
In many multiple-input multiple-output (MIMO) communication applications, two-dimensional (2D) rectangular arrays are used and the angular field of interest is different in the azimuth and elevation angle domains. In this paper, we show how to exploit scenarios with users confined to narrow elevation angles by means of 2D rectangular arrays with low-resolution spatial Σ∆ sampling in only one (i.e., the vertical) dimension. We analyze the 2D directions-of-arrival (DoA) estimation performance of MUSIC for such arrays, and illustrate the resulting advantage of the Σ∆ approach over standard one-bit receivers.
more »
« less
- PAR ID:
- 10348128
- Date Published:
- Journal Name:
- 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
- Page Range / eLocation ID:
- 391 to 395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Distributed acoustic sensing (DAS) provides dense arrays ideal for seismic tomography. However, DAS only records average axial strain change along the cable, which can complicate the interpretation of surface-wave observations. With a rectangular DAS array located in the City of Oxnard, California, we compare phase velocity dispersion at the same location illuminated by differently oriented virtual sources. The dispersion curves are consistent for colinear and noncolinear virtual sources, suggesting that surface-wave observations in most of the cross-correlations are dominated by Rayleigh waves. Our measurements confirm that colinear channel pairs provide higher Rayleigh-wave signal-to-noise ratio (SNR). For cross-correlations of noncolinear channel pairs, the travel time of each connecting ray path can still be obtained despite the lower SNR of Rayleigh wave signals. The inverted Rayleigh-wave dispersion map reveals an ancient river channel consistent with the local geologic map. Our results demonstrate the potential of DAS-based 2D surface-wave tomography without special treatment of directional sensitivity in areas where one type of wave is dominating or can be identified.more » « less
-
We used the transfer matrix method to investigate the conditions supporting the existence of directional bulk waves in a two-dimensional (2D) phononic crystal. The 2D crystal was a square lattice of unit cells composed of rectangular subunits constituted of two different isotropic continuous media. We established the conditions on the geometry of the phononic crystal and its constitutive media for the emergence of waves, which, for the same handedness, exhibited a non-zero amplitude in one direction within the crystal’s 2D Brillouin zone and zero amplitude in the opposite direction. Due to time-reversal symmetry, the crystal supported propagation in the reverse direction for the opposite handedness. These features may enable robust directional propagation of bulk acoustic waves and topological acoustic technology.more » « less
-
Scalable fabrication of two-dimensional (2D) arrays of quantum dots (QDs) and quantum rods (QRs) with nanoscale precision is required for numerous device applications. However, self-assembly–based fabrication of such arrays using DNA origami typically suffers from low yield due to inefficient QD and QR DNA functionalization. In addition, it is challenging to organize solution-assembled DNA origami arrays on 2D device substrates while maintaining their structural fidelity. Here, we reduced manufacturing time from a few days to a few minutes by preparing high-density DNA-conjugated QDs/QRs from organic solution using a dehydration and rehydration process. We used a surface-assisted large-scale assembly (SALSA) method to construct 2D origami lattices directly on solid substrates to template QD and QR 2D arrays with orientational control, with overall loading yields exceeding 90%. Our fabrication approach enables the scalable, high fidelity manufacturing of 2D addressable QDs and QRs with nanoscale orientational and spacing control for functional 2D photonic devices.more » « less
-
Abstract One of the major challenges in the van der Waals (vdW) integration of two-dimensional (2D) materials is achieving high-yield and high-throughput assembly of predefined sequences of monolayers into heterostructure arrays. Mechanical exfoliation has recently been studied as a promising technique to transfer monolayers from a multilayer source synthesized by other techniques, allowing the deposition of a wide variety of 2D materials without exposing the target substrate to harsh synthesis conditions. Although a variety of processes have been developed to exfoliate the 2D materials mechanically from the source and place them deterministically onto a target substrate, they can typically transfer only either a wafer-scale blanket or one small flake at a time with uncontrolled size and shape. Here, we present a method to assemble arrays of lithographically defined monolayer WS2 and MoS2 features from multilayer sources and directly transfer them in a deterministic manner onto target substrates. This exfoliate–align–release process—without the need of an intermediate carrier substrate—is enabled by combining a patterned, gold-mediated exfoliation technique with a new optically transparent, heat-releasable adhesive. WS2/MoS2 vdW heterostructure arrays produced by this method show the expected interlayer exciton between the monolayers. Light-emitting devices using WS2 monolayers were also demonstrated, proving the functionality of the fabricated materials. Our work demonstrates a significant step toward developing mechanical exfoliation as a scalable dry transfer technique for the manufacturing of functional, atomically thin materials.more » « less
An official website of the United States government

