skip to main content

Title: Direction Finding with 2D Arrays Using Spatial Sigma-Delta ADCs
In many multiple-input multiple-output (MIMO) communication applications, two-dimensional (2D) rectangular arrays are used and the angular field of interest is different in the azimuth and elevation angle domains. In this paper, we show how to exploit scenarios with users confined to narrow elevation angles by means of 2D rectangular arrays with low-resolution spatial Σ∆ sampling in only one (i.e., the vertical) dimension. We analyze the 2D directions-of-arrival (DoA) estimation performance of MUSIC for such arrays, and illustrate the resulting advantage of the Σ∆ approach over standard one-bit receivers.  more » « less
Award ID(s):
1703635 1824565
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Page Range / eLocation ID:
391 to 395
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although challenging, assembling and orienting non-spherical nanomaterials into two- and three-dimensional (2D and 3D) ordered arrays can facilitate versatile collective properties by virtue of their shape-dependent properties that cannot be realized with their spherical counterparts. Here, we report on the self-assembly of gold nanorods (AuNRs) into 2D films at the vapor/liquid interface facilitated by grafting them with poly(ethylene glycol) (PEG). Using surface sensitive synchrotron grazing incidence small angle X-ray scattering (GISAXS) and specular X-ray reflectivity (XRR), we show that PEG-AuNRs in aqueous suspensions migrate to the vapor/liquid interface in the presence of salt, forming a uniform monolayer with planar-to-surface orientation. Furthermore, the 2D assembled PEG functionalized AuNRs exhibit short range order into rectangular symmetry with side-by-side and tail-to-tail nearest-neighbor packing. The effect of PEG chain length and salt concentration on the 2D assembly are also reported.

    more » « less
  2. Reducing control complexity is essential for achieving large-scale quantum computing, particularly on platforms operating in cryogenic environments. Wiring each qubit to a room-temperature control poses a challenge, as this approach would surpass the thermal budget in the foreseeable future. An essential tradeoff becomes evident: reducing control knobs compromises the ability to independently address each qubit. Recent progress in neutral atom-based platforms suggests that rectangular addressing may strike a balance between control granularity and flexibility for 2D qubit arrays. This scheme allows addressing qubits on the intersections of a set of rows and columns each time. While quadratically reducing controls, it may necessitate more depth. We formulate the depth-optimal rectangular addressing problem as exact binary matrix factorization, an NP-hard problem also appearing in communication complexity and combinatorial optimization. We introduce a satisfiability modulo theories-based solver for this problem, and a heuristic, row packing, performing close to the optimal solver on various benchmarks. Furthermore, we discuss rectangular addressing in the context of fault-tolerant quantum computing, leveraging a natural two-level structure. 
    more » « less
  3. Assembly of two-dimensional (2D) molecular arrays on surfaces produces a wide range of architectural motifs exhibiting unique properties, but little attention has been given to the mechanism by which they nucleate. Using peptides selected for their binding affinity to molybdenum disulfide, we investigated nucleation of 2D arrays by molecularly resolved in situ atomic force microscopy and compared our results to molecular dynamics simulations. The arrays assembled one row at a time, and the nuclei were ordered from the earliest stages and formed without a free energy barrier or a critical size. The results verify long-standing but unproven predictions of classical nucleation theory in one dimension while revealing key interactions underlying 2D assembly.

    more » « less
  4. Abstract Distributed acoustic sensing (DAS) provides dense arrays ideal for seismic tomography. However, DAS only records average axial strain change along the cable, which can complicate the interpretation of surface-wave observations. With a rectangular DAS array located in the City of Oxnard, California, we compare phase velocity dispersion at the same location illuminated by differently oriented virtual sources. The dispersion curves are consistent for colinear and noncolinear virtual sources, suggesting that surface-wave observations in most of the cross-correlations are dominated by Rayleigh waves. Our measurements confirm that colinear channel pairs provide higher Rayleigh-wave signal-to-noise ratio (SNR). For cross-correlations of noncolinear channel pairs, the travel time of each connecting ray path can still be obtained despite the lower SNR of Rayleigh wave signals. The inverted Rayleigh-wave dispersion map reveals an ancient river channel consistent with the local geologic map. Our results demonstrate the potential of DAS-based 2D surface-wave tomography without special treatment of directional sensitivity in areas where one type of wave is dominating or can be identified. 
    more » « less
  5. Scalable fabrication of two-dimensional (2D) arrays of quantum dots (QDs) and quantum rods (QRs) with nanoscale precision is required for numerous device applications. However, self-assembly–based fabrication of such arrays using DNA origami typically suffers from low yield due to inefficient QD and QR DNA functionalization. In addition, it is challenging to organize solution-assembled DNA origami arrays on 2D device substrates while maintaining their structural fidelity. Here, we reduced manufacturing time from a few days to a few minutes by preparing high-density DNA-conjugated QDs/QRs from organic solution using a dehydration and rehydration process. We used a surface-assisted large-scale assembly (SALSA) method to construct 2D origami lattices directly on solid substrates to template QD and QR 2D arrays with orientational control, with overall loading yields exceeding 90%. Our fabrication approach enables the scalable, high fidelity manufacturing of 2D addressable QDs and QRs with nanoscale orientational and spacing control for functional 2D photonic devices.

    more » « less