skip to main content


Search for: All records

Award ID contains: 2144751

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Contrastive learning (CL) has been widely investigated with various learning mech- anisms and achieves strong capability in learning representations of data in a self-supervised manner using unlabeled data. A common fashion of contrastive learning on this line is employing large-sized encoders to achieve comparable performance as the supervised learning counterpart. Despite the success of the labelless training, current contrastive learning algorithms failed to achieve good performance with lightweight (compact) models, e.g., MobileNet, while the re- quirements of the heavy encoders impede the energy-efficient computation, espe- cially for resource-constrained AI applications. Motivated by this, we propose a new self-supervised CL scheme, named SACL-XD, consisting of two technical components, Slimmed Asymmetrical Contrastive Learning (SACL) and Cross- Distillation (XD), which collectively enable efficient CL with compact models. While relevant prior works employed a strong pre-trained model as the teacher of unsupervised knowledge distillation to a lightweight encoder, our proposed method trains CL models from scratch and outperforms them even without such an expensive requirement. Compared to the SoTA lightweight CL training (dis- tillation) algorithms, SACL-XD achieves 1.79% ImageNet-1K accuracy improve- ment on MobileNet-V3 with 64⇥ training FLOPs reduction. Code is available at https://github.com/mengjian0502/SACL-XD. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. In genomic analysis, the major computation bottle- neck is the memory- and compute-intensive DNA short reads alignment due to memory-wall challenge. This work presents the first Resistive RAM (RRAM) based Compute-in-Memory (CIM) macro design for accelerating state-of-the-art BWT based genome sequencing alignment. Our design could support all the core instructions, i.e., XNOR based match, count, and addition, required by alignment algorithm. The proposed CIM macro implemented in integration of HfO2 RRAM and 65nm CMOS demonstrates the best energy efficiency to date with 2.07 TOPS/W and 2.12G suffixes/J at 1.0V. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. In-memory computing (IMC) provides energy- efficient solutions to deep neural networks (DNN). Most IMC de- signs for DNNs employ fixed-point precisions. However, floating- point precision is still required for DNN training and complex inference models to maintain high accuracy. There have not been float-point precision based IMC works in the literature where the float-point computation is immersed into the weight memory storage. In this work, we propose a novel floating-point precision IMC macro with a configurable architecture that supports both normal 8-bit floating point (FP8) and 8-bit block floating point (BF8) with a shared exponent. The proposed FP-IMC macro implemented in 28nm CMOS demonstrates 12.1 TOPS/W for FP8 precision and 66.6 TOPS/W for BF8 precision, improving energy-efficiency beyond the state-of-the-art FP IMC macros. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. Channel decoders are key computing modules in wired/wireless communication systems. Recently neural network (NN)-based decoders have shown their promising error-correcting performance because of their end-to-end learning capability. However, compared with the traditional approaches, the emerging neural belief propagation (NBP) solution suffers higher storage and computational complexity, limiting its hardware performance. To address this challenge and develop a channel decoder that can achieve high decoding performance and hardware performance simultaneously, in this paper we take a first step towards exploring SRAM-based in-memory computing for efficient NBP channel decoding. We first analyze the unique sparsity pattern in the NBP processing, and then propose an efficient and fully Digital Sparse In-Memory Matrix vector Multiplier (DSPIMM) computing platform. Extensive experiments demonstrate that our proposed DSPIMM achieves significantly higher energy efficiency and throughput than the state-of-the-art counterparts. 
    more » « less
    Free, publicly-accessible full text available July 9, 2024
  5. Recently, ReRAM crossbar-based deep neural network (DNN) accelerator has been widely investigated. However, most prior works focus on single-task inference due to the high energy consumption of weight reprogramming and ReRAM cells’ low endurance issue. Adapting the ReRAM crossbar-based DNN accelerator for multiple tasks has not been fully explored. In this study, we propose XMA 2 , a novel crossbar-aware learning method with a 2-tier masking technique to efficiently adapt a DNN backbone model deployed in the ReRAM crossbar for new task learning. During the XMA 2 -based multi-task adaption (MTA), the tier-1 ReRAM crossbar-based processing-element- (PE-) wise mask is first learned to identify the most critical PEs to be reprogrammed for essential new features of the new task. Subsequently, the tier-2 crossbar column-wise mask is applied within the rest of the weight-frozen PEs to learn a hardware-friendly and column-wise scaling factor for new task learning without modifying the weight values. With such crossbar-aware design innovations, we could implement the required masking operation in an existing crossbar-based convolution engine with minimal hardware/memory overhead to adapt to a new task. The extensive experimental results show that compared with other state-of-the-art multiple-task adaption methods, XMA 2 achieves the highest accuracy on all popular multi-task learning datasets. 
    more » « less
  6. Recently, a new trend of exploring training sparsity has emerged, which remove parameters during training, leading to both training and inference efficiency improvement. This line of works primarily aims to obtain a single sparse model under a pre-defined large sparsity ratio. It leads to a static/fixed sparse inference model that is not capable of adjusting or re-configuring its computation complexity (i.e., inference structure, latency) after training for real-world varying and dynamic hardware resource availability. To enable such run-time or post-training network morphing, the concept of `dynamic inference' or `training-once-for-all' has been proposed to train a single network consisting of multiple sub-nets once, but each sub-net could perform the same inference function with different computing complexity. However, the traditional dynamic inference training method requires a joint training scheme with multi-objective optimization, which suffers from very large training overhead. In this work, for the first time, we propose a novel alternating sparse training (AST) scheme to train multiple sparse sub-nets for dynamic inference without extra training cost compared to the case of training a single sparse model from scratch. Furthermore, to mitigate the interference of weight update among sub-nets, we propose gradient correction within the inner-group iterations to reduce their weight update interference. We validate the proposed AST on multiple datasets against state-of-the-art sparse training method, which shows that AST achieves similar or better accuracy, but only needs to train once to get multiple sparse sub-nets with different sparsity ratios. More importantly, compared with the traditional joint training based dynamic inference training methodology, the large training overhead is completely eliminated without affecting the accuracy of each sub-net. 
    more » « less
  7. By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly. 
    more » « less
  8. We present a generic and programmable Processing-in-SRAM (PSRAM) accelerator chip design based on an 8T-SRAM array to accommodate a complete set of Boolean logic operations (e.g., NOR/NAND/XOR, both 2- and 3-input), majority, and full adder, for the first time, all in a single cycle. PSRAM provides the programmability required for in-memory computing platforms that could be used for various applications such as parallel vector operation, neural networks, and data encryption. The prototype design is implemented in a SRAM macro with size of 16 kb, demonstrating one of the fastest programmable in-memory computing system to date operating at 1.23 GHz. The 65nm prototype chip achieves system-level peak throughput of 1.2 TOPS, and energy-efficiency of 34.98 TOPS/W at 1.2V. 
    more » « less
  9. RRAM-based in-memory computing (IMC) effectively accelerates deep neural networks (DNNs) and other machine learning algorithms. On the other hand, in the presence of RRAM device variations and lower precision, the mapping of DNNs to RRAM-based IMC suffers from severe accuracy loss. In this work, we propose a novel hybrid IMC architecture that integrates an RRAM-based IMC macro with a digital SRAM macro using a programmable shifter to compensate for the RRAM variations and recover the accuracy. The digital SRAM macro consists of a small SRAM memory array and an array of multiply-and-accumulate (MAC) units. The non-ideal output from the RRAM macro, due to device and circuit non-idealities, is compensated by adding the precise output from the SRAM macro. In addition, the programmable shifter allows for different scales of compensation by shifting the SRAM macro output relative to the RRAM macro output. On the algorithm side, we develop a framework for the training of DNNs to support the hybrid IMC architecture through ensemble learning. The proposed framework performs quantization (weights and activations), pruning, RRAM IMC-aware training, and employs ensemble learning through different compensation scales by utilizing the programmable shifter. Finally, we design a silicon prototype of the proposed hybrid IMC architecture in the 65nm SUNY process to demonstrate its efficacy. Experimental evaluation of the hybrid IMC architecture shows that the SRAM compensation allows for a realistic IMC architecture with multi-level RRAM cells (MLC) even though they suffer from high variations. The hybrid IMC architecture achieves up to 21.9%, 12.65%, and 6.52% improvement in post-mapping accuracy over state-of-the-art techniques, at minimal overhead, for ResNet-20 on CIFAR-10, VGG-16 on CIFAR-10, and ResNet-18 on ImageNet, respectively. 
    more » « less