skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating Solar Maximum Conditions Using the Alfvén Wave Solar Atmosphere Model (AWSoM)
Abstract To simulate solar coronal mass ejections (CMEs) and predict their time of arrival and geomagnetic impact, it is important to accurately model the background solar wind conditions in which CMEs propagate. We use the Alfvén Wave Solar atmosphere Model (AWSoM) within the the Space Weather Modeling Framework to simulate solar maximum conditions during two Carrington rotations and produce solar wind background conditions comparable to the observations. We describe the inner boundary conditions for AWSoM using the ADAPT global magnetic maps and validate the simulated results with EUV observations in the low corona and measured plasma parameters at L1 as well as at the position of the Solar Terrestrial Relations Observatory spacecraft. This work complements our prior AWSoM validation study for solar minimum conditions and shows that during periods of higher magnetic activity, AWSoM can reproduce the solar plasma conditions (using properly adjusted photospheric Poynting flux) suitable for providing proper initial conditions for launching CMEs.  more » « less
Award ID(s):
1663800 2027555
PAR ID:
10348332
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
176
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe our first attempt to systematically simulate the solar wind during different phases of the last solar cycle with the Alfvén Wave Solar atmosphere Model (AWSoM) developed at the University of Michigan. Key to this study is the determination of the optimal values of one of the most important input parameters of the model, the Poynting flux parameter, which prescribes the energy flux passing through the chromospheric boundary of the model in the form of Alfvén wave turbulence. It is found that the optimal value of the Poynting flux parameter is correlated with the area of the open magnetic field regions with the Spearman’s correlation coefficient of 0.96 and anticorrelated with the average unsigned radial component of the magnetic field with the Spearman’s correlation coefficient of −0.91. Moreover, the Poynting flux in the open field regions is approximately constant in the last solar cycle, which needs to be validated with observations and can shed light on how Alfvén wave turbulence accelerates the solar wind during different phases of the solar cycle. Our results can also be used to set the Poynting flux parameter for real-time solar wind simulations with AWSoM. 
    more » « less
  2. Abstract In van der Holst et al. (2019), we modeled the solar corona and inner heliosphere of the first encounter of NASA’s Parker Solar Probe (PSP) using the Alfvén Wave Solar atmosphere Model (AWSoM) with Air Force Data Assimilative Photospheric flux Transport–Global Oscillation Network Group magnetograms, and made predictions of the state of the solar wind plasma for the first encounter. AWSoM uses low-frequency Alfvén wave turbulence to address the coronal heating and acceleration. Here, we revise our simulations, by introducing improvements in the energy partitioning of the wave dissipation to the electron and anisotropic proton heating and using a better grid design. We compare the new AWSoM results with the PSP data and find improved agreement with the magnetic field, turbulence level, and parallel proton plasma beta. To deduce the sources of the solar wind observed by PSP, we use the AWSoM model to determine the field line connectivity between PSP locations near the perihelion at 2018 November 6 UT 03:27 and the solar surface. Close to the perihelion, the field lines trace back to a negative-polarity region about the equator. 
    more » « less
  3. Abstract Forecasting the arrival time of Earth‐directed coronal mass ejections (CMEs) via physics‐based simulations is an essential but challenging task in space weather research due to the complexity of the underlying physics and limited remote and in situ observations of these events. Data assimilation techniques can assist in constraining free model parameters and reduce the uncertainty in subsequent model predictions. In this study, we show that CME simulations conducted with the Space Weather Modeling Framework (SWMF) can be assimilated with SOHO LASCO white‐light (WL) observations and solar wind observations at L1 prior to the CME eruption to improve the prediction of CME arrival time. The L1 observations are used to constrain the model of the solar wind background into which the CME is launched. Average speed of CME shock front over propagation angles are extracted from both synthetic WL images from the Alfvén Wave Solar atmosphere Model (AWSoM) and the WL observations. We observe a strong rank correlation between the average WL speed and CME arrival time, with the Spearman's rank correlation coefficients larger than 0.90 for three events occurring during different phases of the solar cycle. This enables us to develop a Bayesian framework to filter ensemble simulations using WL observations, which is found to reduce the mean absolute error of CME arrival time prediction from about 13.4 to 5.1 hr. The results show the potential of assimilating readily available L1 and WL observations within hours of the CME eruption to construct optimal ensembles of Sun‐to‐Earth CME simulations. 
    more » « less
  4. Abstract For the first time, we simulate the detailed spectral line emission from a solar active region (AR) with the Alfvén Wave Solar Model (AWSoM). We select an AR appearing near disk center on 2018 July 13 and use the National Solar Observatory’s Helioseismic and Magnetic Imager synoptic magnetogram to specify the magnetic field at the model’s inner boundary. To resolve small-scale magnetic features, we apply adaptive mesh refinement with a horizontal spatial resolution of 0°.35 (4.5 Mm), four times higher than the background corona. We then apply the SPECTRUM code, using CHIANTI spectral emissivities, to calculate spectral lines forming at temperatures ranging from 0.5 to 3 MK. Comparisons are made between the simulated line intensities and those observed by Hinode/Extreme-ultraviolet Imaging Spectrometer where we find close agreement across a wide range of loop sizes and temperatures (about 20% relative error for both the loop top and footpoints at a temperature of about 1.5 MK). We also simulate and compare Doppler velocities and find that simulated flow patterns are of comparable magnitude to what is observed. Our results demonstrate the broad applicability of the low-frequency AWSoM for explaining the heating of coronal loops. 
    more » « less
  5. We investigate properties of large-scale solar wind Alfvénic fluctuations and their evolution during radial expansion. We assume a strictly radial background magnetic field B∥R, and we use two-dimensional hybrid (fluid electrons, kinetic ions) simulations of balanced Alfvénic turbulence in the plane orthogonal to B; the simulated plasma evolves in a system comoving with the solar wind (i.e., in the expanding box approximation). Despite some model limitations, simulations exhibit important properties observed in the solar wind plasma: Magnetic field fluctuations evolve toward a state with low-amplitude variations in the amplitude B=|B| and tend to a spherical polarization. This is achieved in the plasma by spontaneously generating field aligned, radial fluctuations that suppress local variations of B, maintaining B∼ const. spatially in the plasma. We show that within the constraint of spherical polarization, variations in the radial component of the magnetic field, BR lead to a simple relation between δBR and δB=|δB| as δBR∼δB2/(2B), which correctly describes the observed evolution of the rms of radial fluctuations in the solar wind. During expansion, the background magnetic field amplitude decreases faster than that of fluctuations so that their the relative amplitude increases. In the regime of strong fluctuations, δB∼B, this causes local magnetic field reversals, consistent with solar wind switchbacks. 
    more » « less