skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The search for failed supernovae with the Large Binocular Telescope: a new candidate and the failed SN fraction with 11 yr of data
ABSTRACT We present updated results of the Large Binocular Telescope Search for Failed Supernovae. This search monitors luminous stars in 27 nearby galaxies with a current baseline of 11 yr of data. We re-discover the failed supernova (SN) candidate N6946-BH1 as well as a new candidate, M101-OC1. M101-OC1 is a blue supergiant that rapidly disappears in optical wavelengths with no evidence for significant obscuration by warm dust. While we consider other options, a good explanation for the fading of M101-OC1 is a failed SN, but follow-up observations are needed to confirm this. Assuming only one clearly detected failed SN, we find a failed SN fraction $$f = 0.16^{+0.23}_{-0.12}$$ at 90 per cent confidence. We also report on a collection of stars that show slow (∼decade), large amplitude (ΔL/L > 3) luminosity changes.  more » « less
Award ID(s):
1814440
PAR ID:
10348501
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
508
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
516 to 528
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Several technosignature techniques focus on historic events such as SN 1987A as the basis to search for coordinated signal broadcasts from extraterrestrial agents. The recently discovered SN 2023ixf in the spiral galaxy M101 is the nearest Type II supernova in over a decade, and will serve as an important benchmark event. Here we review the potential for SN 2023ixf to advance ongoing techonsignature searches, particularly signal-synchronization techniques such as the “SETI Ellipsoid” that identifies over time stars that could transmit signals after observing a supernovae event. We find that more than 100 stars within 100 pc are already close to intersecting this SETI Ellipsoid, providing numerous targets for real-time monitoring within ∼3° of SN 2023ixf. We are commencing a radio technosignature monitoring campaign of these targets with the Allen Telescope Array and the Green Bank Telescope. 
    more » « less
  2. Abstract We present JWST MIRI 5.6, 10, and 21μm observations of the candidate failed supernova N6946-BH1 along with Hubble Space Telescope (HST) WFPC/IR 1.1 and 1.6μm data and ongoing optical monitoring data with the Large Binocular Telescope. There is a very red, dusty source at the location of the candidate, which has only ∼10%–15% of the luminosity of the progenitor star. The source is very faint in the HST near-IR observations (∼103L) and is not optically variable to a limit of ∼103Lat theRband. The dust is likely silicate and probably has to be dominated by very large grains, as predicted for dust formed in a failed supernova. The required visual optical depths are modest, so it should begin to significantly brighten in the near-IR over the next few years. 
    more » « less
  3. ABSTRACT We present new Large Binocular Telescope, Hubble Space Telescope, and Spitzer Space Telescope data for the failed supernova candidate N6946-BH1. We also report an unsuccessful attempt to detect the candidate with Chandra. The ∼300 000 $$\, \mathrm{L}_\odot$$ red supergiant progenitor underwent an outburst in 2009 and has since disappeared in the optical. In the LBT data from 2008 May through 2019 October, the upper limit on any increase in the R-band luminosity of the source is $$2000 \, \mathrm{L}_\odot$$. HST and Spitzer observations show that the source continued to fade in the near-IR and mid-IR, fading by approximately a factor of 2 between 2015 October and 2017 September to 2900 $$\, \mathrm{L}_\odot$$ at Hband (F160W). Models of the spectral energy distribution are inconsistent with a surviving star obscured either by an ongoing wind or dust formed in the transient. The disappearance of N6946-BH1 remains consistent with a failed supernova, but the post-failure phenomenology requires further theoretical study. 
    more » « less
  4. The search for extraterrestrial intelligence (SETI) Ellipsoid is a geometric method for prioritizing technosignature observations based on the strategy of receiving signals synchronized to conspicuous astronomical events. Precise distances to nearby stars from Gaia makes constraining Ellipsoid crossing times possible. Here we explore the utility of using the Gaia Catalog of Nearby Stars to select targets on the SN 1987A SETI Ellipsoid, as well as the Ellipsoids defined by 278 classical novae. Less than 8% of stars within the 100 pc sample are inside the SN 1987A SETI Ellipsoid, meaning the vast majority of nearby stars are still viable targets for monitoring over time. We find an average of 734 stars per year within the 100 pc volume will intersect the Ellipsoid from SN 1987A, with ∼10% of those having distance uncertainties from Gaia better than 0.1 lyr. 
    more » « less
  5. Abstract In an effort to search for faint sources of emission over arbitrary timescales, we present a novel method for analyzing forced photometry light curves in difference imaging from optical surveys. Our method “ATLAS Clean,” or ATClean, utilizes the reported fluxes, uncertainties, and fits to the point-spread function (PSF) from difference images to quantify the statistical significance of individual measurements. We apply this method to control light curves across the image to determine whether any source of flux is present in the data for a range of specific timescales. From ATLASo-band imaging at the site of the Type II supernova (SN) 2023ixf in M101 from 2015–2023, we show that this method accurately reproduces the 3σflux limits produced from other, more computationally expensive methods. We derive limits for emission on timescales of 5 days and 80–300 days at the site of SN 2023ixf, which are 19.8 and 21.3 mag, respectively. The latter limits rule out variability for unextinguished red supergiants with initial masses >22M, comparable to the most luminous predictions for the SN 2023ixf progenitor system. We also compare our limits to short-timescale outbursts, similar to those expected for Type IIn SN progenitor stars or the Type II SN 2020tlf, and rule out outburst ejecta masses of >0.021M, much lower than the inferred mass of circumstellar matter around SN 2023ixf in the literature. In the future, these methods can be applied to any forced photometry on difference imaging from other surveys, such as Rubin optical imaging. 
    more » « less