skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimal free resolutions of differential modules
We propose a notion of minimal free resolutions for differential modules, and we prove existence and uniqueness results for such resolutions. We also take the first steps toward studying the structure of minimal free resolutions of differential modules. Our main result in this direction explains a sense in which the minimal free resolution of a differential module is a deformation of the minimal free resolution of its homology; this leads to structural results that mirror classical theorems about minimal free resolutions of modules.  more » « less
Award ID(s):
1902123 2200469
PAR ID:
10348636
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Working in a polynomial ring , where is an arbitrary commutative ring with 1, we consider the th Veronese subalgebras , as well as natural ‐submodules inside . We develop and use characteristic‐free theory of Schur functors associated to ribbon skew diagrams as a tool to construct simple ‐equivariant minimal free ‐resolutions for the quotient ring and for these modules . These also lead to elegant descriptions of for all and for any pair of these modules . 
    more » « less
  2. Abstract We define a local homomorphism$$(Q,k)\to (R,\ell )$$to be Koszul if its derived fiber$$R\otimes ^{\mathsf {L}}_Q k$$is formal, and if$$\operatorname {Tor}^{Q}(R,k)$$is Koszul in the classical sense. This recovers the classical definition whenQis a field, and more generally includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms. We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms from the perspective of$$\mathrm {A}_{\infty }$$-structures on resolutions. We use this machinery to construct universal free resolutions ofR-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of anR-moduleMis often minimal and can be described by a finite amount of data wheneverMandRhave finite projective dimension overQ. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous resolutions for various other classes of local rings. 
    more » « less
  3. Abstract A foundational principle in the study of modules over standard graded polynomial rings is that geometric positivity conditions imply vanishing of Betti numbers. The main goal of this paper is to determine the extent to which this principle extends to the nonstandard ‐graded case. In this setting, the classical arguments break down, and the results become much more nuanced. We introduce a new notion of Castelnuovo–Mumford regularity and employ exterior algebra techniques to control the shapes of nonstandard ‐graded minimal free resolutions. Our main result reveals a unique feature in the nonstandard ‐graded case: the possible degrees of the syzygies of a graded module in this setting are controlled not only by its regularity, but also by its depth. As an application of our main result, we show that given a simplicial projective toric variety and a module over its coordinate ring, the multigraded Betti numbers of are contained in a particular polytope when satisfies an appropriate positivity condition. 
    more » « less
  4. Bauer, Tomer; Liu, Gaku (Ed.)
    There is an abundance of deep literature on the use of free resolutions to study modules and vector bundle resolutions to study coherent sheaves. When studying a module over the Cox ring of a smooth projective toric variety X, each approach comes with its own challenges. There is geometric information that free resolutions fail to encode, while vector bundle resolutions resist study using algebraic and combinatorial techniques. Recently, Berkesch, Erman, and Smith introduced virtual resolutions, which are amenable to algebraic and combinatorial study and also capture desirable geometric information. In this extended abstract, we continue this program in the combinatorially-rich Stanley–Reisner setting. In particular, when X is a product of projective spaces, we produce a large new class of virtually Cohen–Macaulay Stanley–Reisner rings. After augmenting the simplicial complexes associated to these Stanley–Reisner rings with a coloring that reflects the product structure on X, our primary tool is Reisner’s criterion, whose conclusion we interpret in the virtual setting. We also provide two constructions of short virtual resolutions for use beyond the Stanley–Reisner case. 
    more » « less
  5. We use the Kempf-Lascoux-Weyman geometric technique in order to determine the minimal free resolutions of some orbit closures of quivers. As a consequence, we obtain that for Dynkin quivers orbit closures of 1-step representations are normal with rational singularities. For Dynkin quivers of type $$ \mathbb{A}$$, we describe explicit minimal generators of the defining ideals of orbit closures of 1-step representations. Using this, we provide an algorithm for type $$ \mathbb{A}$$ quivers for describing an efficient set of generators of the defining ideal of the orbit closure of any representation. 
    more » « less