Drywall partition walls are susceptible to damage at low-level drifts, and hence reducing such damage is key to achieving seismic resiliency in buildings. Prior tests on drywall partition walls have shown that slip track connection detailing leads to better performance than other detailing, such as fully-fixed connections. However, in all prior testing, partition wall performance was evaluated using a unidirectional loading protocol (either in-plane or out-of-plane) or in shake table testing. Moreover, all details are susceptible to considerable damage to wall intersections. Two phases of the test have been performed at the Natural Hazards Engineering Research Infrastructure (NHERI) Lehigh Equipment Facility to develop improved details of drywall partition walls under bidirectional loading. The partition walls were tested alongside a cross-laminated timber (CLT) post-tensioned rocking wall subassembly, wherein the CLT system is under development as a resilient lateral system for tall timber buildings. In the Phase 1, the slip behavior of conventional slip-track detailing was compared to telescoping detailing (track-within-a-track deflection assembly). In the Phase 2, two details for reducing the wall intersection damage were evaluated on traditional slip-track C-shaped walls. First, a corner gap detail was tested. This detail incorporates a gap through the wall intersection to reduce the collisionmore »
Phase 1: Slip Behavior in Drywall Partition Walls
Abstract
The slip behavior of two straight drywall partition walls (without return walls) – one with conventional slip-track detailing and the other with telescoping detailing – was examined. These drywall- Publisher:
- Designsafe-CI
- Publication Year:
- NSF-PAR ID:
- 10348736
- Subject(s):
- Phase 1: Structural and Non-Structural Subassemblies Phase 1: Control and Sensors Phase 1: Bidirectional loading Phase 1: Experiment Setup Report Atlss
- Award ID(s):
- 1635363
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Drywall partition walls (DPW) could considerably affect the seismic resilience of tall cross-laminated timber (CLT) buildings due to cost and building downtime associated with repair. These drift sensitive components are susceptible to damage at low shaking intensities, and thus controlling or eliminating such damage in low to moderate earthquakes is key to seismic resilience. Conversely, post-tensioned CLT rocking walls have been shown to be a resilient lateral load resistant system for tall CLT building in high seismic areas. A series of tests will be performed at the NHERI Lehigh EF to compare the performance of DPWs with conventional slip-track detailing and alternative telescoping slip-track detailing (track-within-a-track deflection assembly), and to evaluate different approaches for minimizing damage at the wall intersections through the use of gaps. Moreover, a configuration is examined with partition wall encapsulating the rocking wall for fire protection. This paper presents a summary of pre-test studies to design the best configuration of DPW to improve the overall resiliency of the structure.
-
Abstract
Two partition walls with return walls at both ends and traditional slip-track detailing were investigated. Special gap details were evaluated to reduce damage at the wall intersection. The first detail utilized a large gap in the wall intersection, while the other detail utilized distributed gaps along the wall. The walls were tested under a bidirectional loading protocol, to provide better insight into the wall intersection behavior under bidirectional loading. -
Solovjovs, Sergejs (Ed.)In the present paper, we summarize the results of the research devoted to the problem of stability of the fluid flow moving in a channel with flexible walls and interacting with the walls. The walls of the vessel are subject to traveling waves. Experimental data show that the energy of the flowing fluid can be transferred and consumed by the structure (the walls), inducing “traveling wave flutter.” The problem of stability of fluid-structure interaction splits into two parts: (a) stability of fluid flow in the channel with harmonically moving walls and (b) stability of solid structure participating in the energy exchange with the flow. Stability of fluid flow, the main focus of the research, is obtained by solving the initial boundary value problem for the stream function. The main findings of the paper are the following: (i) rigorous formulation of the initial boundary problem for the stream function, ψ x , y , t , induced by the fluid-structure interaction model, which takes into account the axisymmetric pattern of the flow and “no-slip” condition near the channel walls; (ii) application of a double integral transformation (the Fourier transformation and Laplace transformation) to both the equation and boundary and initial conditions,more »
-
This paper provides indoor reflection, scattering, transmission, and large-scale path loss measurements and models, which describe the main propagation mechanisms at millimeter wave and Terahertz frequencies. Channel properties for common building materials (drywall and clear glass) are carefully studied at 28, 73, and 140 GHz using a wideband sliding correlation based channel sounder system with rotatable narrow-beam horn antennas. Reflection coefficient is shown to linearly increase as the incident angle increases, and lower reflection loss (e.g., stronger reflections) are observed as frequencies increase for a given incident angle. Although backscatter from drywall is present at 28, 73, and 140 GHz, smooth surfaces (like drywall) are shown to be modeled as a simple reflected surface, since the scattered power is 20 dB or more below the reflected power over the measured range of frequency and angles. Partition loss tends to increase with frequency, but the amount of loss is material dependent. Both clear glass and drywall are shown to induce a depolarizing effect, which becomes more prominent as frequency increases. Indoor propagation measurements and large-scale indoor path loss models at 140 GHz are provided, revealing similar path loss exponent and shadow fading as observed at 28 and 73 GHz. The measurementsmore »