Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Advancing the seismic resilience of building systems is an active area of research in earthquake engineering. Ensuring safe egress in and out of buildings during extreme events, such as an earthquake, is essential to supporting this effort. To this end, understanding the seismic response of stairs facilitates the robust design of egress systems to ensure they can remain operable after an earthquake. From prior earthquake events and physical experiments, it is understood that stairs with a flight to landing fixed connection at multiple levels within a building are prone to damage. In addition, the stair system with flight to landing fixed attachments may affect the dynamic behavior of the building. To accommodate seismic inter‐story drifts, a kinematically free connection between the stairs and landing has been proposed. Herein this connection is referred to as adrift‐compatiblestair connection. To investigate and aid in the design of such a connection, a unique set of shake table experiments were conducted at the University of Nevada, Reno. In this paper, an overview of these tests is presented, and a high‐fidelity finite element model of the tested stair system is used to predict the responses measured during these experiments. Developed in Abaqus, the robustness of the modeled stair unit is investigated considering a variety of contrasting connections, namely, drift‐compatible connections, fixed ends and one end fixed and the other free. Results from these numerical simulations offer guidance towards development of simplified models of multi‐level stair subsystems. Such models are needed when investigating seismic resilience of building systems across a wider range of hazard levels. Furthermore, best practices observed utilizing the models developed and evaluated herein against experimental data will be useful for subsequent analysis of larger stair tower models, such as the 10‐story stair system implemented in the NHERI Tall Wood mass timber building with post‐tensioned rocking walls, conducted in 2023 at the UC San Diego Large High‐Performance Outdoor Shake Table.more » « less
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            A test program was designed to answer if it is possible to design and build a tall mass timber building with resilient performance against large earthquakes. Resilient performance was defined as to receive no structural damage under design level earthquake, and only easily repairable damage under maximum considered earthquake. The system under investigation is a full-scale 10-story mass timber building designed and constructed with many innovative systems and details including post-tensioned wood rocking wall lateral systems. Non-structural components on the building were also tested to ensure their damage in all earthquakes are repairable and will not significantly delay the functional recovery of the building after large earthquakes. The tests were conducted using multi-directional ground motion excitations ranging from frequent earthquakes to maximum considered earthquakes. The resultant dataset contains a total of 88 shake table tests and 48 white noise tests conducted on the building at the high-performance outdoor shake table facility in San Diego CA. U.S.A. Data was obtained using over 700 channels of wired sensors installed on the building during the seismic tests, presented in the form of time history of the measured responses. The tall wood building survived all excitations without detectible structural damage. This publication includes detailed documentation on the design and testing of the building, including construction drawing sets. Representative photo and video footage of the test structure during construction and testing are also included. This dataset is useful for researchers and engineers working on mass timber building design and construction in regions of high seismicity.more » « less
- 
            Mass timber is a sustainable option for building design compared to traditional steel and concrete building systems. A shake table test of a full-scale 10-story mass timber building with post-tensioned mass timber rocking walls will be conducted as part of the NHERI TallWood project. The rocking wall system is inherently flexible and is expected to sustain large interstory drifts. Thus, the building’s vertically oriented non-structural components, which include cold-formed steel (CFS) framed exterior skin subassemblies that use platform, bypass, and spandrel framing, a stick-built glass curtain wall subassembly with mechanically captured glazing, and CFS framed interior walls, will be built with a variety of innovative details to accommodate the large drift demands. This paper will describe these innovative details and the mechanisms by which they mitigate damage, provide an overview of the shake table test protocol, and present performance predictions for the non-structural walls.more » « less
- 
            During extreme events such as earthquakes, stairs are the primary means of egress in and out of buildings. Therefore, understanding the seismic response of this non-structural system is essential. Past earthquake events have shown that stairs with a flight to landing fixed connection are prone to damage due to the large interstory drift demand they are subjected to. To address this, resilient stair systems with drift-compatible connections have been proposed. These stair systems include stairs with fixed-free connections, sliding-slotted connections, and related drift-compatible detailing. Despite the availability of such details in design practice, they have yet to be implemented into full-scale, multi-floor building test programs. To conduct a system-level experimental study using true-to-field boundary conditions of these stair systems, several stair configurations are planned for integration within the NHERI TallWood 10-story mass timber building test program. The building is currently under construction at the UC San Diego 6-DOF Large High-Performance Outdoor Shake Table (LHPOST6). To facilitate pre-test investigation of the installed stair systems a comprehensive finite element model of stairs with various boundary conditions has been proposed and validated via comparison with experimental data available on like-detailed single-story specimens tested at the University of Nevada, Reno (UNR). The proposed modelling approach was used to develop the finite element model of a single-story, scissor-type, stair system with drift-compatible connections to be implemented in the NHERI TallWood building. This paper provides an overview, and pre-test numerical evaluation of the planned stair testing program within the mass timber shake table testing effort.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available