skip to main content

Title: Phase 2: Gap Detailing in Drywall Partition Walls with Return Walls
Abstract
Two partition walls with return walls at both ends and traditional slip-track detailing were investigated. Special gap details were evaluated to reduce damage at the wall intersection. The firstMore>>
Creator(s):
; ; ; ;
Publisher:
Designsafe-CI
Publication Year:
NSF-PAR ID:
10348735
Subject(s):
Phase 2: Structural and Non-Structural Subassemblies Phase 1: Control and Sensors Phase 2: Control and Sensors Phase 2: Bidirectional loading Phase 2: Experiment Setup Report Atlss
Award ID(s):
1635363
Sponsoring Org:
National Science Foundation
More Like this
  1. Drywall partition walls are susceptible to damage at low-level drifts, and hence reducing such damage is key to achieving seismic resiliency in buildings. Prior tests on drywall partition walls have shown that slip track connection detailing leads to better performance than other detailing, such as fully-fixed connections. However, in all prior testing, partition wall performance was evaluated using a unidirectional loading protocol (either in-plane or out-of-plane) or in shake table testing. Moreover, all details are susceptible to considerable damage to wall intersections. Two phases of the test have been performed at the Natural Hazards Engineering Research Infrastructure (NHERI) Lehigh Equipment Facility to develop improved details of drywall partition walls under bidirectional loading. The partition walls were tested alongside a cross-laminated timber (CLT) post-tensioned rocking wall subassembly, wherein the CLT system is under development as a resilient lateral system for tall timber buildings. In the Phase 1, the slip behavior of conventional slip-track detailing was compared to telescoping detailing (track-within-a-track deflection assembly). In the Phase 2, two details for reducing the wall intersection damage were evaluated on traditional slip-track C-shaped walls. First, a corner gap detail was tested. This detail incorporates a gap through the wall intersection to reduce the collisionmore »damage at two intersecting walls. Second, a distributed gap detail was tested. In this approach, the aim was to reduce damage by using more frequent control joints through the length of the wall. All walls were tested under a bidirectional loading protocol with three sub-cycles: in-plane, a bi-directional hexagonal load path, and a bi-directional hexagonal load path with an increase in the out-of-plane drift. This loading protocol allows for studying the bidirectional behavior of walls and evaluating the effect of out-of-plane drift on the partition wall resisting force. In the Phase 1, the telescoping detailing performed better than conventional slip track detailing because it eliminated damage to the framing. In Phase 2, the distributed gap detailing delayed damage to about 1% story drift. For the corner gap detailing, the sacrificial corner bead detached at low drifts, but the wall itself was damage-free until 2.5% drift. Bidirectional loading was found to have an insignificant influence on the in-plane resistance of the walls, and the overall resistance of the walls was trivial compared to the CLT rocking.« less
  2. Abstract
    The slip behavior of two straight drywall partition walls (without return walls) – one with conventional slip-track detailing and the other with telescoping detailing – was examined. These drywall partition walls were tested under a bidirectional loading protocol, which allowed for systematic evaluation of the effect of out of plane drift on the in-plane resistance of the drywall partition walls.
  3. This paper presents an experimental study on the multi-directional cyclic lateral-load response of post-tensioned self-centering (SC) cross-laminated timber (CLT) shear walls. The SC-CLT wall damage states are introduced and qualitatively defined in terms of the level of effort needed to repair the wall to restore its initial functional state. A comparison between SC-CLT wall damage states under unidirectional and multi-directional loading is presented. The experimental test results show that the SC-CLT wall damage state initiation occurs at lower story-drifts under multi-directional loading compared to unidirectional loading. The SC-CLT wall damage states are quantified in terms of the engineering demand parameter (EDP) defined as wall story-drift. Fragility functions that relate the conditional probability of the occurrence of a selected damage state at a wall corner to the EDP are developed. The results reinforce the observations that multi-directional loading on the CLT shear walls causes more damage that unidirectional loading.
  4. Two- and three-dimensional rock-penetrating-radar data were acquired on the wall of a pillar in an underground limestone mine. The objective was to test the ability of radar to image fractures and karst voids and to characterize their geometry, aperture, and fluid content, with the goal of mitigating mining hazards. Strong radar reflections in the field data correlate with fractures and a cave exposed on the pillar walls. Large pillar wall topography was included in the steep-dip Kirchhoff migration algorithm because standard elevation corrections are inaccurate. The depth-migrated 250 MHz radar images illuminate fractures, karst voids, and the far wall of the pillar up to approximately 25 m depth into the rock, with a spatial resolution of <0.5 m. Higher frequency radar improved the image resolution and aided in the interpretation, but at the cost of shallower depth of penetration and extra acquisition effort. Due to the strong contrast in physical properties between the rock and the fracture fluid, fractures with apertures as thin as a 50th of a radar wavelength were imaged. Water-filled fractures with mm-scale aperture and air-filled fractures with cm-scale apertures produce strong reflections at 250 MHz. A strong variation in the reflection amplitude along each fracture is interpreted to represent themore »variable fracture aperture and the nonplanar fracture structure. Fracture apertures were quantitatively measured, but distinguishing water from air-filled fractures was not possible due to the complex radar wavelet and fracture geometry. Two conjugate fracture sets were imaged. One of these fracture sets dominates the rock mass stability and water inrush challenges throughout the mine. All of the detected voids and a large cave are at the intersection of two fractures, indicating preferential water flow and dissolution along conjugate fracture intersections. Detecting, locating, and characterizing fractures and voids prior to excavation can enable miners to mitigate potential collapse and flood hazards before they occur.« less
  5. A number of studies have been performed to understand the lateral load carrying capacity of wood frame shear walls. The existing studies, however, have been primarily focused on the intact shear walls, disregarding the possibility of capacity loss due to prior extreme loading events. During windstorms, in particular, windborne debris is the leading cause of damage and destruction. While the impact force induced by windborne debris can directly damage a shear wall, the consequences can become disastrous, as the prior damage adversely affects the in-plane lateral load carrying capacity of the shear wall. This critical aspect motivated the current study to investigate the impact and post-impact performance of wood frame shear walls. For this purpose, a high-fidelity computational framework capable of characterizing both types of damage is developed. Further to providing an in-depth understanding of the process of damage formation and propagation, this study examines how a range of impact scenarios and wall design factors influence the extent of damage that the wood frame shear walls experience in a windstorm. The outcome of this study is then employed to introduce a capacity loss index for the multi-hazard design and assessment of wood frame (and other similar) shear walls in themore »regions prone to severe windstorms.« less