skip to main content


Title: Monolithic Integration of Quantum Emitters with Silicon Nitride Photonic Platform

Silicon nitride has great potential for integrated quantum photonics. We demonstrate monolithic integration of intrinsic quantum emitters in SiN with waveguides which show a room-temperature off-chip count rate of ~104counts/s and clear antibunching behavior.

 
more » « less
Award ID(s):
2015025
NSF-PAR ID:
10348794
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monolithic Integration of Quantum Emitters with Silicon Nitride Photonic Platform
Page Range / eLocation ID:
FW5F.6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of ann-dimensional convex body within multiplicative error ε usingÕ(n3+ n2.5) queries to a membership oracle andÕ(n5+n4.5/ε)additional arithmetic operations. For comparison, the best known classical algorithm usesÕ(n3.5+n32)queries andÕ(n5.5+n52)additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of “Chebyshev cooling,” where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. To complement our quantum algorithms, we also prove that volume estimation requiresΩ (√ n+1/ε)quantum membership queries, which rules out the possibility of exponential quantum speedup innand shows optimality of our algorithm in 1/ε up to poly-logarithmic factors.

     
    more » « less
  2. Abstract

    A few unit cells of thick colloidal CsPbBr3nanoplatelets (NPLs) exhibit strong quantum confinement. However, due to the increased surface‐to‐volume ratio, they show poor photoluminescence quantum yield (PLQY) resulting from surface traps. Here, a unique, quantum‐confined core/crown perovskite is reported for the first time, where the CsPbBr3NPL surface is passivated by laterally grown thin FAPbBr3crown layers. Unlike regular core/shells, the FAPbBr3is coated around the core NPLs resulting in blue emission. Careful control of the growth kinetics while monitoring growth using in situ PL led to the formation of core/crown perovskites with nearly two times improvement in thin film PLQYs. HR‐TEM analyses show that the interplanar distances of the core match with CsPbBr3and the crown match with FAPbBr3. The XRD and TEM analyses revealed that their thickness remains the same even if Cs+to FA+ratios are varied, indicating lateral growth of FAPbBr3around the CsPbBr3core. Further, FA+ions in the crown lattice are confirmed by FTIR and1HNMR. Finally, considering their high PLQYs and narrow linewidths, the core/crown NPLs are employed as blue emitters in light‐emitting diodes, and a maximum external quantum efficiency of 0.4% at 2.71 eV (457 nm) with a luminance of 513 cd m−2is achieved.

     
    more » « less
  3. Abstract

    Recently, 2D electron gases have been observed in atomically thin semiconducting crystals, enabling the observation of rich physical phenomena at the quantum level within the ultimate thickness limit. However, the observation of 2D electron gases and subsequent quantum Hall effect require exceptionally high crystalline quality, rendering mechanical exfoliation as the only method to produce high‐quality 2D semiconductors of black phosphorus and indium selenide (InSe), which hinder large‐scale device applications. Here, the controlled one‐step synthesis of high‐quality 2D InSe thin films via chemical vapor transport method is reported. The carrier Hall mobility of hexagonal boron nitride (hBN) encapsulated InSe flakes can be up to 5000 cm2V−1s−1at 1.5 K, enabling to observe the quantum Hall effect in a synthesized van der Waals semiconductor. The existence of the quantum Hall effect in directly synthesized 2D semiconductors indicates a high quality of the chemically synthesized 2D semiconductors, which hold promise in quantum devices and applications with high mobility.

     
    more » « less
  4. Abstract

    We propose a new model of the spherical symmetric quantum black hole in the reduced phase space formulation. We deparametrize gravity by coupling to the Gaussian dust which provides the material coordinates. The foliation by dust coordinates covers both the interior and exterior of the black hole. After the spherical symmetry reduction, our model is a 1 + 1 dimensional field theory containing infinitely many degrees of freedom. The effective dynamics of the quantum black hole is generated by an improved physical HamiltonianHΔ. The holonomy correction inHΔis implemented by theμ¯-scheme regularization with a Planckian area scale Δ (which often chosen as the minimal area gap in loop quantum gravity). The effective dynamics recovers the semiclassical Schwarzschild geometry at low curvature regime and resolves the black hole singularity with Planckian curvature, e.g.RμνρσRμνρσ∼ 1/Δ2. Our model predicts that the evolution of the black hole at late time reaches the charged Nariai geometry dS2×S2with Planckian radiiΔ. The Nariai geometry is stable under linear perturbations but may be unstable by nonperturbative quantum effects. Our model suggests the existence of quantum tunneling of the Nariai geometry and a scenario of black-hole-to-white-hole transition.

     
    more » « less
  5. Abstract

    Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way toquantum liquids with exotic entanglementthrough two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilized by strong antiferromagnetic interaction with Curie–Weiss temperature ranging from −766 to −169 K due to magnetic anisotropy. The anisotropy-averaged frustration parameter is 2000, seldom seen in iridates. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state; a mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10appear to form Ir3O12trimers of face-sharing IrO6octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1D chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the frustration mechanism leading to this quantum liquid.

     
    more » « less