skip to main content


Title: Facile synthesis of diverse hetero polyaromatic hydrocarbons (PAHs) via the styryl Diels–Alder reaction of conjugated diynes
The styryl dehydro-Diels–Alder reaction with a conjugated diyne is reported. While typical alkyne–styrene condensation requires elevated temperatures (>160 °C), the application of a conjugated diyne allowed for effective transformation under milder conditions (80 °C). The thermally stable triazole–gold (TA–Au) catalyst further improved the reaction yields (up to 95%), producing the desired alkynyl–naphthalene in a single step with molecular oxygen as the oxidant. Sequential alkyne activation resulted in various polyaromatic hydrocarbons (PAHs) in excellent yields, highlighting the efficiency of this new strategy for the preparation of PAHs with good functional group tolerance and structural diversity.  more » « less
Award ID(s):
2054180
NSF-PAR ID:
10348834
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Organic Chemistry Frontiers
Volume:
9
Issue:
16
ISSN:
2052-4129
Page Range / eLocation ID:
4301 to 4308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Polycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2 + 2 + n ] ( n = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total). The critical discovery is the site-selectivity of an Ir-catalyzed [2 + 2 + 2] cycloaddition, which preferentially cyclizes tethered diyne units with preservation of other (peripheral) alkynyl groups . The potential for generalization of the site-selectivity to other [2 + 2 + n ] reactions is demonstrated by identification of a Cp 2 Zr-mediated [2 + 2 + 1]/metallacycle transfer sequence for synthesis of an alkynylated, selenophene-annulated PAH. The new PAHs are excellent synthons for macrocyclic conjugated nanocarbons. As a proof of concept, four were subjected to alkyne metathesis catalysis to afford large, PAH-containing arylene ethylene macrocycles, which possess a range of cavity sizes reaching well into the nanometer regime. Notably, these high-yielding macrocyclizations establish that synthetically convenient pentynyl groups can be effective for metathesis since the 4-octyne byproduct is sequestered by 5 Å MS. Most importantly, this work is a demonstration of how site-selective reactions can be harnessed to rapidly build up structural complexity in a practical, scalable fashion. 
    more » « less
  2. Abstract

    We report a transition metal‐free, regio‐ and stereo‐selective, phosphine‐catalyzed method for thetranshydroboration of 1,3‐diynes with pinacolborane that affords (E)‐1‐boryl‐1,3‐enynes. The reaction proceeds with excellent selectivity for boron addition to the external carbon of the 1,3‐diyne framework as unambiguously established by NMR and X‐ray crystallographic studies. The reaction displays a broad substrate scope including unsymmetrical diynes to generate products in high yield (up to 95 %). Experimental and theoretical studies suggest that phosphine attack on the alkyne is a key process in the catalytic cycle.

     
    more » « less
  3. null (Ed.)
    ABSTRACT Two intermolecular hydroalkenylation reactions of 1,6-enynes are presented which yield substituted 5-membered carbo- and -heterocycles. This reactivity is enabled by a cationic bis-diphenylphosphinopropane (DPPP)CoI species which forms a cobaltacyclopentene intermediate by oxidative cyclization of the enyne. This key species interacts with alkenes in distinct fashion, depending on the identity of the coupling partner to give regiodivergent products. Simple alkenes undergo insertion reactions to furnish 1,3-dienes whereby one of the alkenes is tetrasubstituted. When acrylates are employed as coupling partners, the site of intermolecular C-C formation shifts from the alkyne to the alkene motif of the enyne, yield-ing Z-substituted-acrylate derivatives. Computational studies provide support for our experimental observations and show that the turnover-limiting steps in both reactions are the interactions of the alkenes with the cobaltacyclopentene intermediate via either a 1,2-insertion in the case of ethylene, or an unexpected b-C-H activation in the case of most acrylates. Thus, the H syn to the ester is activated through the coordination of the acrylate carbonyl to the cobaltacycle intermediate, which explains the uncommon Z-selectivity and regiodivergence. Variable time normalization analysis (VTNA) of the kinetic data reveals a dependance upon the concentration of cobalt, acrylate, and activator. A KIE of 2.1 was observed with methyl methacrylate in separate flask experiments, indicating that C-H cleavage is the turnover-limiting step in the catalytic cycle. Lastly, a Hammett study of aryl-substituted enynes yields a rho- value of -0.4, indicating that more electron-rich substituents accelerate the rate of the reaction. 
    more » « less
  4. Abstract

    A new [4+2] cycloaddition of allenyne‐alkyne is developed. The reaction is believed to proceed with forming an α,3‐dehydrotoluene intermediate. This species behaves as a σπ‐diradical to react with a hydrogen atom donor, whereas it displays a zwitterionic reactivity toward weak nucleophiles. The efficiency of trapping α,3‐dehydrotoluene depends not only on its substituents but also the trapping agents. Notable features of the reaction are the activating role of the extra alkyne of the 1,3‐diyne that reacts with the allenyne moiety and the opposite mode of trapping with oxygen and nitrogen nucleophiles. Oxygen nucleophiles result in the oxygen‐end incorporation at the benzylic position of the α,3‐dehydrotoluene, whereas with amine nucleophiles the nitrogen‐end is incorporated into the aromatic core. Relying on the allenyne‐alkyne cycloaddition as an enabling strategy, a concise total synthesis of phosphodiesterase‐4 inhibitory selaginpulvilin A is realized.

     
    more » « less
  5. Abstract

    Allylation and conjunctive cross‐coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel‐catalyzed conjunctive cross‐coupling with a non‐conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate aza‐heterocycle directing groups that are useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated by the facile reactivity of the β‐γ alkene of the starting material, whereas the ϵ‐ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of an analogous method with alkyne substrates. Mechanistic studies reveal the importance of the dissociation of the weakly coordinating directing group to allow the allyl moiety to bind and facilitate C(sp3)−C(sp3) reductive elimination.

     
    more » « less