skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining STEM Diagnostic Exam Scores and Self-efficacy as Predictors of Three-year STEM Psychological and Career Outcomes
In this research-based paper, we explore the relationships among Rice University STEM students’ high school preparation, psychological characteristics, and career aspirations. Although greater high school preparation in STEM coursework predicts higher STEM retention and performance in college [1], objective academic preparation and college performance do not fully explain STEM retention decisions, and the students who leave STEM are often not the lowest performing students [2]. Certain psychosocial experiences may also influence students’ STEM decisions. We explored the predictive validity of 1) a STEM diagnostic exam as an objective measure of high school science and math preparation and 2) self-efficacy as a psychological measure on long-term (three years later) STEM career aspirations and STEM identity of underprepared Rice STEM students. University administrators use diagnostic exam scores (along with other evidence of high school underpreparation) to identify students who might benefit from additional support. Using linear regression to explore the link between diagnostic exam scores and self-efficacy, exam scores predicted self-efficacy a semester after students’ first semester in college; exam scores were also marginally correlated with self-efficacy three years later. Early STEM career aspirations predicted later career aspirations, accounting for 21.3% of the variance of career outcome expectations three years later (β=.462, p=.006). Scores on the math diagnostic exam accounted for an additional 10.1% of the variance in students’ three-year STEM career aspirations (p=.041). Self-efficacy after students’ first semester did not predict future STEM aspirations. Early STEM identity explained 28.8% of the variance in three-year STEM identity (p=.001). Math diagnostic exam scores accounted for only marginal incremental variance after STEM identity, and self-efficacy after students’ first semester did not predict three-year STEM aspirations. Overall, we found that the diagnostic exam provided incremental predictive validity in STEM career aspirations after students’ sixth semester of college, indicating that early STEM preparation has long-lasting ramifications for students’ STEM career intentions. Our next steps include examining whether students’ diagnostic exam scores predict STEM graduation rates and final GPAs for science and math versus engineering majors.  more » « less
Award ID(s):
1565032
PAR ID:
10348878
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Society for Engineering Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this research-based paper, we discuss the development of a measure of Rice University students’ STEM study strategies and then explore the measure’s correlation with several important psychological outcomes in a sample of underprepared first-year STEM students (n=94). STEM attrition remains a pressing concern nationally, particularly for students who took less rigorous STEM courses in high school, a population that disproportionally comprises underrepresented minorities. The authors developed an 11-item measure of STEM-specific study strategies, termed the STEM Study Strategies Questionnaire. We explored STEM-specific identity, self-efficacy, and career aspirations, as well as perceived utility of attaining a STEM degree, using a model based on Eccles and Wigfield’s (2002) expectancy-value framework of achievement. An exploratory factor analysis found a four-factor solution to the newly developed scale: Group Work in STEM, Active STEM Learning, Interactions with STEM Professors, and STEM Exam Familiarity. The authors found significant moderate to strong correlations among all psychological variables, as well as with the Group Work and STEM Exam Familiarity factors. Next steps for this research are to develop further measure items to capture each of the four factors and to conduct confirmatory analyses on different samples of STEM students, both those who are relatively underprepared and appropriately prepared for college STEM coursework. 
    more » « less
  2. The current study examines the validity of the RESP diagnostic exam and its predictive validity relative to standardized tests with a sample of students (N = 976) who matriculated into Rice University from 2012 to 2014. The RESP diagnostic exam was related to grades, and we found that the correlation between the RESP diagnostic exam and grades was greater for STEM grades than non-STEM grades. We found that the diagnostic exam accounted for an incremental 9% of variance in STEM grades above SAT performance, but only 1% of incremental variance above SAT in non-STEM grades. Moreover, we found evidence of range restriction for both SAT and RESP diagnostic exam performance for Rice University matriculants, further suggesting the utility of the diagnostic exam is at the lower end of the distribution. In summary, our results suggest that an additional diagnostic exam written by schools to specifically measure STEM preparation for their program can be a useful addition to procedures for selecting students for special experiences such as summer bridge programs. 
    more » « less
  3. Understanding high school students’ perceptions and dispositions toward STEM, and the role science and math self-efficacy play in establishing STEM career aspirations is imperative to preparing the STEM workforce of the future. Project STEMulate is an industry-aligned and technology-rich Problem-based Learning (PBL) model. The goal of this NSF ITEST grant-funded study (2018-2020) was to improve students’ attitudes towards STEM. Project STEMulate focuses on Upward Bound students in Hawaiˋi and was implemented at three sites: Maui, Hilo, and Oahu. The participants voluntarily selected to participate in this program. The current study reviews year one data collected on the impact of Project STEMulate on low-income and underrepresented and/or native Hawaiian students' STEM career interest, and their science self-efficacy. Students’ reactions to the STEM learning experience were extremely positive. 80% of students expressed a desire to pursue a career in STEM at the post test. High school students who listed their plan to pursue a career in STEM also showed a higher self-efficacy and motivation. Analysis of the results demonstrates this program was effective in empowering students with insights into careers, enhancing knowledge that would serve them in pursuit of a career in STEM. In addition, the project fostered a can-do attitude and increased students’ science self- efficacy. 
    more » « less
  4. nterest in science, technology, engineering, and mathematics (STEM) begins as early as elementary and middle school. As youth enter adolescence, they begin to shape their personal identities and start making decisions about who they are and could be in the future. Students form their career aspirations and interests related to STEM in elementary school, long before they choose STEM coursework in high school or college. Much of the literature examines either science or STEM identity and career aspirations without separating out individual sub-disciplines. Therefore, the purpose of this paper is to describe the development of a survey instrument to specifically measure engineering identity and career aspirations in adolescents and preadolescents. When possible, we utilized existing measures of STEM identity and career aspirations, adapting them when necessary to the elementary school level and to fit the engineering context. The instrument was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. Three phases of survey development were conducted that involved 492 elementary students from diverse communities in the United States. Three sets of items were developed and/or adapted throughout the four phases. The first set of items assessed Engineering Identity. Recent research suggests that identity consists of three components: recognition, interest, and performance/competence. Items assessing each of these constructs were included in the survey. The second and third sets of items reflected Career Interests and Aspirations. Because elementary and middle school students often have a limited or nascent awareness of what engineers do or misconceptions about what a job in science or engineering entails, it is problematic to measure their engineering identity or career aspirations by directly asking them whether they want to be a scientist/engineer or by using a checklist of broad career categories. Therefore, similar to other researchers, the second set of items assessed the types of activities that students are interested in doing as part of a future career, including both non-STEM and STEM (general and engineering-specific) activities. These items were created by the research team or adapted from activity lists used in existing research. The third set of items drew from career counseling measures relying on Holland’s Career Codes. We adapted the format of these instruments by asking students to choose the activity they liked the most from a list of six activities that reflected each of the codes rather than responding to their interest about each activity. Preliminary findings for each set of items will be discussed. Results from the survey contribute to our understanding of engineering identities and career aspirations in preadolescent and adolescent youth. However, our instrument has the potential for broader application in non-engineering STEM environments (e.g., computer science) with minor wording changes to reflect the relevant science subject area. More research is needed in determining its usefulness in this capacity. 
    more » « less
  5. To combat math underperformance among incoming STEM majors, Rice University designed a summer bridge program with National Science Foundation (NSF) S-STEM funding that included an intensive calculus course. Students invited to participate in the program were identified as being underprepared for STEM classes based on their standardized test scores, high school STEM coursework, and socioeconomic status. One of the program’s goals is to improve students’ preparation for the advanced math courses required for all STEM majors at Rice. The bridge program is designed to teach the material that has historically been most challenging for underprepared students, meaning the math content covered primarily second-semester calculus topics. We explored the impact of bridge program participation on math performance in first and second-semester math. First, we examined group differences in math preparation. Though program administrators attempt to create equivalent bridge and comparison groups, the bridge program is optional, meaning group assignment is not completely random. Bridge students were less prepared than comparison students on number of high school calculus AP (or equivalent) credits received. We analyzed group differences in final class grades from 2012-2017 among the comparison group, the bridge group, and the rest of the class (i.e. non-comparison and nonbridge), standardizing grades using Z-scores. Planned contrasts found that bridge students performed slightly better than, but not significantly different from, comparison students in first semester math. Conversely, planned contrasts found that the bridge group significantly outperformed the comparison group in second-semester math. These results suggest that bridge program exposure to calculus may improve performance relative to a comparison group, which is especially noteworthy because bridge students are the least math-prepared STEM students entering the university. Future research will analyze outcomes in more advanced math classes. We will use these findings to refine the bridge program’s approach to teaching students how to succeed at collegiate-level math classes and, ultimately, as STEM majors at Rice. 
    more » « less