skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Modeling net ecosystem carbon balance and loss in coastal wetlands exposed to sea‐level rise and saltwater intrusion
Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m−2 year−1; FAQ = 317 ± 186 gC m−2 year−1). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = −366 ± 15 gC m−2 year−1; FAQ = 311 ± 30 gC m−2 year−1) and elevated salinity (NECB = −594 ± 94 gC m−2 year−1; FAQ = 729 ± 142 gC m−2 year−1) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primary productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150–1070 gC m−2 year−1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management.  more » « less
Award ID(s):
2025954 1237517
NSF-PAR ID:
10349257
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Ecological Applications
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Net ecosystem carbon balance is a comprehensive assessment of ecosystem function that can test restoration effectiveness. Coastal peatlands are globally important carbon sinks that are vulnerable to carbon loss with saltwater intrusion. It is uncertain how wetland carbon stocks and fluxes change during freshwater restoration following exposure to saltwater and elevated nutrients. We restored freshwater to sawgrass (Cladium jamaicense) peat monoliths from freshwater marshes of the Everglades (Florida, U.S.A.) that had previously been exposed to elevated salinity (approximately9 ppt) and phosphorus (P) loading (1 g P m−2year−1) in wetland mesocosms. We quantified changes in water and soil physicochemistry, plant and soil carbon and nutrient standing stocks, and net ecosystem productivity during restoration. Added freshwater immediately reduced porewater salinity from >8 to approximately 2 ppt, but elevated porewater dissolved organic carbon persisted. Above‐ and belowground biomass, leaf P concentrations, and instantaneous rates of gross ecosystem productivity (GEP) and ecosystem respiration (ER) remained elevated from prior added P. Modeled monthly GEP and ER were higher in marshes with saltwater and P legacies, resulting in negative net ecosystem productivities that were up to 12× lower than controls. Leaf litter breakdown rates and litter P concentrations were 2× higher in marshes with legacies of added saltwater and P. Legacies of saltwater and P on carbon loss persisted despite freshwater restoration, but recovery was greatest for freshwater marshes exposed to saltwater alone. Our results suggest that restoration in nutrient‐limited freshwater wetlands exposed to saltwater intrusion and nutrient enrichment is a slow process.

     
    more » « less
  2. Abstract

    Emergent marsh and open water have been identified as alternate stable states in tidal marshes with large, relative differences in hydrogeomorphic conditions. In the Florida coastal Everglades, concern has been raised regarding the loss of non-tidal, coastal peat marsh via dieback of emergent vegetation and peat collapse. To aid in the identification of alternate stable states, our objective was to characterize the variability of hydrogeomorphic and biologic conditions using a field survey and long-term monitoring of hydrologic and geomorphic conditions across a range of vegetated (emergent, submerged) and unvegetated (open water) communities, which we refer to as “ecosystem states,” in a non-tidal, brackish peat marsh of the coastal Everglades. Results show (1) linear relationships among field-surveyed geomorphic, hydrologic, and biologic variables, with a 35-cm mean difference in soil surface elevation between emergent and open water states, (2) an overall decline in soil elevation in the submerged state that was related to cumulative dry days, and (3) a 2× increase in porewater salinity during the dry season in the emergent state that was also related to the number of dry days. Coupled with findings from previous experiments, we propose a conceptual model that describes how seasonal hydrologic variability may lead to ecosystem state transitions between emergent and open water alternate states. Since vegetative states are only moderately salt tolerant, as sea-level rise pushes the saltwater front inland, the importance of continued progress on Everglades restoration projects, with an aim to increase the volume of freshwater being delivered to coastal wetlands, is the primary management intervention available to mitigate salinization and slow ecosystem state shifts in non-tidal, brackish peat marshes.

     
    more » « less
  3. Coastal wetlands, such as the Everglades, are increasingly being exposed to stressors that have the potential to modify their existing ecological processes because of global climate change. Their soil microbiomes include a population of organisms important for biogeochemical cycling, but continual stresses can disturb the community’s composition, causing functional changes. The Everglades feature wetlands with varied salinity levels, implying that they contain microbial communities with a variety of salt tolerances and microbial functions. Therefore, tracking the effects of stresses on these populations in freshwater and brackish marshes is critical. The study addressed this by utilizing next generation sequencing (NGS) to construct a baseline soil microbial community. The carbon and sulfur cycles were studied by sequencing a microbial functional gene involved in each process, the mcrA and dsrA functional genes, respectively. Saline was introduced over two years to observe the taxonomic alterations that occurred after a long-term disturbance such as seawater intrusion. It was observed that saltwater dosing increased sulfite reduction in freshwater peat soils and decreased methylotrophy in brackish peat soils. These findings add to the understanding of microbiomes by demonstrating how changes in soil qualities impact communities both before and after a disturbance such as saltwater intrusion. 
    more » « less
  4. Abstract

    Coastal ecosystems are exposed to saltwater intrusion but differential effects on biogeochemical cycling are uncertain. We tested how elevated salinity and phosphorus (P) individually and interactively affect microbial activities and biogeochemical cycling in freshwater and brackish wetland soils. In experimental mesocosms, we added crossed gradients of elevated concentrations of soluble reactive P (SRP) (0, 20, 40, 60, 80 μg/L) and salinity (0, 4, 7, 12, 16 ppt) to freshwater and brackish peat soils (10, 14, 17, 22, 26 ppt) for 35 d. We quantified changes in water chemistry [dissolved organic carbon (DOC), ammonium (), nitrate + nitrite (N + N), SRP concentrations], soil microbial extracellular enzyme activities, respiration rates, microbial biomass C, and soil chemistry (%C, %N, %P, C:N, C:P, N:P). DOC, , and SRP increased in freshwater but decreased in brackish mesocosms with elevated salinity. DOC similarly decreased in brackish mesocosms with added P, and N + N decreased with elevated salinity in both freshwater and brackish mesocosms. In freshwater soils, water column P uptake occurred only in the absence of elevated salinity and when P was above 40 µg/L. Freshwater microbial EEAs, respiration rates, and microbial biomass C were consistently higher compared to those from brackish soils, and soil phosphatase activities and microbial respiration rates in freshwater soils decreased with elevated salinity. Elevated salinity increased arylsulfatase activities and microbial biomass C in brackish soils, and elevated P increased microbial respiration rates in brackish soils. Freshwater soil %C, %N, %P decreased and C:P and N:P increased with elevated salinity. Elevated P increased %C and C:N in freshwater soils and increased %P but decreased C:P and N:P in brackish soils. Freshwater soils released more C and nutrients than brackish soils when exposed to elevated salinity, and both soils were less responsive to elevated P than expected. Freshwater soils became more nutrient‐depleted with elevated salinity, whereas brackish soils were unaffected by salinity but increased P uptake. Microbial activities in freshwater soils were inhibited by elevated salinity and unaffected by added P, but brackish soil microbial activities slightly increased with elevated salinity and P.

     
    more » « less
  5. Abstract

    We experimentally increased salinities in a tidal freshwater marsh on the Altamaha River (Georgia, USA) by exposing the organic rich soils to 3.5 yr of continuous (press) and episodic (pulse) treatments with dilute seawater to simulate the effects of climate change such as sea level rise (press) and drought (pulse). We quantified changes in root production and decomposition, soil elevation, and soil C stocks in replicated (n = 6) 2.5 × 2.5 m field plots. Elevated salinity had no effect on root decomposition, but it caused a significant reduction in root production and belowground biomass that is needed to build and maintain soil elevation capital. The lack of carbon inputs from root production resulted in reduced belowground biomass of 1631 ± 308 vs. 2964 ± 204 g/m2in control plots and an overall 2.8 ± 0.9 cm decline in soil surface elevation in the press plots in the first 3.5 yr, whereas the control (no brackish water additions) and the fresh (river water only) treatments gained 1.2 ± 0.4 and 1.7 ± 0.3 cm, respectively, in a 3.5‐yr period. There was no change in elevation of pulse plots after 3.5 yr. Based on measurements of bulk density and soil C, the decline of 2.8 cm of surface elevation resulted in a loss of 0.77 ± 0.5 kg C/m2in press plots. In contrast, the control and the fresh treatment plots gained 0.25 ± 0.04 and 0.36 ± 0.03 kg C/m2, respectively, which represents a net change in C storage of more than 1 kg C/m2. We conclude that, when continuously exposed to saltwater intrusion, the tidal freshwater marsh’s net primary productivity, especially root production, and not decomposition, are the main drivers of soil organic matter (SOM) accumulation. Reduced productivity leads to loss of soil elevation and soil C, which has important implications for tidal freshwater marsh persistence in the face of rising sea level.

     
    more » « less