skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diversity squared: New insights into patterns of heterobranch species richness and diversification of lineages
Expeditionary field work still remains the most fundamental tool to discover novel species and repetitive sampling in high diversity portions of the Indo-Pacific tropics continues to provide large numbers of previously undocumented taxa. Multidisciplinary collaborative teams and large expeditions are an immense source of novel biodiversity. Micro-scale temporal changes in diverse ecosystems provide a catalyst for new species discovery, as well as insights into the discovery of patterns of trophic and symbiotic divergence. Additionally, phylogenetic analyses of large samples of diverse taxa across geographical gradients have increasingly detected cryptic and pseudo-cryptic species complexes that have dramatically altered our view of species richness. Aposematic and extreme camouflaged colour patterns within the context of fish predatory behaviour provides an evolutionary framework for divergence and convergence of colour patterns. Similarly, recent studies of temperate nudibranch assemblages in temperate waters in Europe, southern Africa and the Pacific coast of North America also demonstrate previously undetected diversity and the presence of colour patterns that likely reflect similarity derived from both common ancestry and convergence. Combining these approaches has documented astonishingly high levels of previously undetected diversity, has huge implications to our knowledge of global biodiversity with a likely 3-5x increase in global species richness, and has developed more appropriate regenerative conservation strategies.  more » « less
Award ID(s):
1856407
PAR ID:
10349314
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Spixiana Supplement
Volume:
30A
ISSN:
0177-7424
Page Range / eLocation ID:
33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimAlthough species richness globally is likely to be declining, patterns in diversity at the regional scale depend on species gains within new habitats and species losses from previously inhabited areas. Our understanding of the processes associated with gains or losses remains poor, including whether these events exhibit immediate or delayed responses to environmental change. LocationThe study focuses on nine temperate marine ecosystems in North America. Time periodThe study period varies by region, but overall encompasses observations from 1970 to 2014. Major taxa studiedWe identified regional gains and losses for 577 marine fish and invertebrate species. MethodsFrom a total of 166,213 sampling events from bottom trawls across North America that informed 17,997 independent observations of species gains and losses, we built generalized linear mixed effects models to test whether lagged temperature can explain instances of gains and losses of marine fishes and invertebrates in North American continental shelf habitats. ResultsWe found that gains were less likely in years with high seasonality, consistent with seasonal extremes as a strong constraint on species occurrence. Losses were also negatively associated with high seasonality, but the response was delayed by 3 years. Main conclusionsEnvironmental conditions play a role in species occupancy across diverse temperate marine ecosystems. Immediate gains paired with delayed losses can drive transient increases in species richness during times of environmental change. Identifying the dynamics behind regional species gains and losses is an important step towards prediction of biodiversity changes across ecosystems. 
    more » « less
  2. NA (Ed.)
    Abstract Deforestation, exploitation, and other drivers of biodiversity loss in Madagascar leave its highly endangered and predominantly endemic wildlife at risk of extinction. Decreasing biodiversity threatens to compromise ecosystem functions and vital services provided to people. New, economical, and diverse methods of biodiversity monitoring can help to establish reliable baseline and long‐term records of species richness. Metabarcoding with invertebrate‐derived DNA (iDNA) has emerged as a promising new biosurveillance tool. An unexpected wet forest fragment tucked in the dry cliffs of Madagascar's southcentral plateau, the Ivohibory Protected Area (IPA), hosts a unique mosaic of species diversity, featuring both dry and wet forest species. Recently elevated to protected status, the IPA has been surveyed for flora and fauna with a range of inventory methods over the course of three years and six expeditions (2016, 2017, & 2019). We collected 1451 leeches over 12 days from the IPA to supplement known species richness and to compare results against current records. With iDNA, we pooled tissues, isolated, and amplified bloodmeal DNA with five sets of primers. We detected 20 species of which four are species of frogs previously undetected and three of which are previously unknown to exist in this region. iDNA surveys have the capacity to provide complementary data to traditional surveying methods like camera traps, line transects, and bioacoustic methods. 
    more » « less
  3. Abstract Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifies species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms offers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fish communities on temperate rocky reefs in southern California. eDNA provided a more-detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species filtering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. Based on historical records in the region (2000–2018) we found that 6.9 times more UVC samples would be required to detect 50 taxa compared to eDNA. Our results show that eDNA metabarcoding can outperform diver counts to capture the spatial patterns in biodiversity at fine scales with less field effort and more power than traditional methods, supporting the notion that eDNA is a critical scientific tool for detecting biodiversity changes in aquatic ecosystems. 
    more » « less
  4. Abstract Marine bivalves are important components of ecosystems and exploited by humans for food across the world, but the intrinsic vulnerability of exploited bivalve species to global changes is poorly known. Here, we expand the list of shallow-marine bivalves known to be exploited worldwide, with 720 exploited bivalve species added beyond the 81 in the United Nations FAO Production Database, and investigate their diversity, distribution and extinction vulnerability using a metric based on ecological traits and evolutionary history. The added species shift the richness hotspot of exploited species from the northeast Atlantic to the west Pacific, with 55% of bivalve families being exploited, concentrated mostly in two major clades but all major body plans. We find that exploited species tend to be larger in size, occur in shallower waters, and have larger geographic and thermal ranges—the last two traits are known to confer extinction-resistance in marine bivalves. However, exploited bivalve species in certain regions such as the tropical east Atlantic and the temperate northeast and southeast Pacific, are among those with high intrinsic vulnerability and are a large fraction of regional faunal diversity. Our results pinpoint regional faunas and specific taxa of likely concern for management and conservation. 
    more » « less
  5. Summary Though substantial effort has gone into predicting how global climate change will impact biodiversity patterns, the scarcity of taxon‐specific information has hampered the efficacy of these endeavors. Further, most studies analyzing spatiotemporal patterns of biodiversity focus narrowly on species richness.We apply machine learning approaches to a comprehensive vascular plant database for the United States and generate predictive models of regional plant taxonomic and phylogenetic diversity in response to a wide range of environmental variables.We demonstrate differences in predicted patterns and potential drivers of native vs nonnative biodiversity. In particular, native phylogenetic diversity is likely to decrease over the next half century despite increases in species richness. We also identify that patterns of taxonomic diversity can be incongruent with those of phylogenetic diversity.The combination of macro‐environmental factors that determine diversity likely varies at continental scales; thus, as climate change alters the combinations of these factors across the landscape, the collective effect on regional diversity will also vary. Our study represents one of the most comprehensive examinations of plant diversity patterns to date and demonstrates that our ability to predict future diversity may benefit tremendously from the application of machine learning. 
    more » « less