skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Paper Texture Similarity in Matisse Lithographs Using a Triplet Neural Network
This work explores the use of a triplet neural net-work for assessing the similarity of paper textures in a collection of Henri Matisse’s lithographs. The available dataset contains digital photomicrographs of papers in the lithograph collection, consisting of four views: two raking light orientations and both sides of the paper. A triplet neural network is first trained to extract features sensitive to anisotropy, and subsequently used to ensure that all papers in the dataset are in the same orientation and side. Another triplet neural network is then used to extract the texture features that are used to assess paper texture similarity. These results can then be used by art conservators and historians to answer questions of art historical significance, such as artist intent.  more » « less
Award ID(s):
1836695
PAR ID:
10349345
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE MIT Undergraduate Research Technology Conference (URTC)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the context of papers used in the graphic arts, including silver gelatin, inkjet, and wove papers, prior work has studied measures of texture similarity for purposes of classifying such papers. The majority of prior work has been based on classical image processing approaches such as Fourier, wavelet, and fractal analysis. In this work, recent advances in deep learning are used to develop a texture similarity approach for measuring paper texture similarity. Since the available datasets generally lack labels, the convolutional neural network is trained using triplet loss to minimize the feature distance of tiles from the same image while simultaneously maximizing the feature distance of tiles drawn from different images. The approach is tested on three paper texture image databases considered in prior works and the results suggest the proposed approach achieves state-of-the-art performance. 
    more » « less
  2. This paper proposes a phase-to-depth deep learning model to repair shadow-induced errors for fringe projection profilometry (FPP). The model comprises two hourglass branches that extract information from texture images and phase maps and fuses the information from the two branches by concatenation and weights. The input of the proposed model contains texture images, masks, and unwrapped phase maps, and the ground truth is the depth map from CAD models. A loss function was chosen to consider image details and structural similarity. The training data contain 1200 samples in the verified virtual FPP system. After training, we conduct experiments on the virtual and real-world scanning data, and the results support the model’s effectiveness. The mean absolute error and the root mean squared error are 1.0279 mm and 1.1898 mm on the validation dataset. In addition, we analyze the influence of ambient light intensity on the model’s performance. Low ambient light limits the model’s performance as the model cannot extract valid information from the completely dark shadow regions in texture images. The contribution of each branch network is also investigated. Features from the texture-dominant branch are leveraged as guidance to remedy shadow-induced errors. Information from the phase-dominant branch network makes accurate predictions for the whole object. Our model provides a good reference for repairing shadow-induced errors in the FPP system. 
    more » « less
  3. To alleviate the cost of collecting and annotating large- scale point cloud datasets for 3D scene understanding tasks, we propose an unsupervised learning approach to learn features from unlabeled point cloud ”3D object” dataset by using part contrasting and object clustering with deep graph neural networks (GNNs). In the contrast learn- ing step, all the samples in the 3D object dataset are cut into two parts and put into a ”part” dataset. Then a contrast learning GNN (ContrastNet) is trained to verify whether two randomly sampled parts from the part dataset belong to the same object. In the cluster learning step, the trained ContrastNet is applied to all the samples in the original 3D object dataset to extract features, which are used to group the samples into clusters. Then another GNN for cluster- ing learning (ClusterNet) is trained to predict the cluster IDs of all the training samples. The contrasting learning forces the ContrastNet to learn high-level semantic features of objects but probably ignores low-level features, while the ClusterNet improves the quality of learned features by be- ing trained to discover objects that belong to the same se- mantic categories by using cluster IDs. We have conducted extensive experiments to evaluate the proposed framework on point cloud classification tasks. The proposed unsupervised learning approach obtained comparable performance to the state-of-the-art unsupervised learning methods that used much more complicated network structures. The code and an extended version of this work is publicly available via: https://github.com/lingzhang1/ContrastNet 
    more » « less
  4. The Tor anonymity system is vulnerable to website fingerprinting attacks that can reveal users Internet browsing behavior. The state-of-the-art website fingerprinting attacks use convolutional neural networks to automatically extract features from packet traces. One such attack undermines an efficient fingerprinting defense previously considered a candidate for implementation in Tor. In this work, we study the use of neural network attribution techniques to visualize activity in the attack's model. These visualizations, essentially heatmaps of the network, can be used to identify regions of particular sensitivity and provide insight into the features that the model has learned. We then examine how these heatmaps may be used to create a new website fingerprinting defense that applies random padding to the website trace with an emphasis towards highly fingerprintable regions. This defense reduces the attacker's accuracy from 98% to below 70% with a packet overhead of approximately 80%. 
    more » « less
  5. To understand the genuine emotions expressed by humans during social interactions, it is necessary to recognize the subtle changes on the face (micro-expressions) demonstrated by an individual. Facial micro-expressions are brief, rapid, spontaneous gestures and non-voluntary facial muscle movements beneath the skin. Therefore, it is a challenging task to classify facial micro-expressions. This paper presents an end-to-end novel three-stream graph attention network model to capture the subtle changes on the face and recognize micro-expressions (MEs) by exploiting the relationship between optical flow magnitude, optical flow direction, and the node locations features. A facial graph representational structure is used to extract the spatial and temporal information using three frames. The varying dynamic patch size of optical flow features is used to extract the local texture information across each landmark point. The network only utilizes the landmark points location features and optical flow information across these points and generates good results for the classification of MEs. A comprehensive evaluation of SAMM and the CASME II datasets demonstrates the high efficacy, efficiency, and generalizability of the proposed approach and achieves better results than the state-of-the-art methods. 
    more » « less