skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Temporal change in relationships between urban structure and surface temperature
Surface temperature influences human health directly and alters the biodiversity and productivity of the environment. While previous research has identified that the composition of urban landscapes influences the physical properties of the environment such as surface temperature, a generalizable and flexible framework is needed that can be used to compare cities across time and space. This study employs the Structure of Urban Landscapes (STURLA) classification combined with remote sensing of New York City’s land surface temperature (LST). These are then linked using machine learning and statistical modeling to identify how greenspace and the built environment influence urban surface temperature. Further, changes in urban structure are then connected to changes in LST over time. It was observed that areas with urban units composed of largely the built environment hosted the hottest temperatures while those with vegetation and water were coolest. Likewise, this is reinforced by borough-level spatial differences in both urban structure and heat. Comparison of these relationships over the period between 2008 and 2017 identified changes in surface temperature that are likely due to the changes in the presence of water, low-rise buildings, and pavement across the city. This research reinforces how human alteration of the environment changes LST and offers units of analysis that can be used for research and urban planning.  more » « less
Award ID(s):
1832407
NSF-PAR ID:
10349558
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Environment and Planning B: Urban Analytics and City Science
ISSN:
2399-8083
Page Range / eLocation ID:
239980832210836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research about urban local climate and urban heat island often relies on land surface temperature (LST) data to characterize the distribution of temperature near the surface. Although using remotely sensed data for such work has the advantage of continuous spatial coverage at regular temporal intervals, it is recognized that surface temperature is not an ideal proxy for air temperature (AT). This study's goal is to develop a spatiotemporal model revealing the relationship between LST and AT within the complexities of the urban environment. A mobile weather monitoring unit was used to collect spatially-explicit fine-scale AT data while Landsat 8 and 9 passed overhead collecting LST data. A spatiotemporal model of the relationship between LST and AT in Philadelphia was constructed with this data utilizing basis functions to account for spatial and temporal autocorrelation. The spatiotemporal model results show a strong relationship between LST and AT and indicate that it is possible to predict fine scale AT (120 m) using remotely sensed LST in an urban context (r-squared = 0.99, RMSE = 0.89 ◦C). The spatiotemporal model outperforms models that do not account for spatial and temporal autocorrelation, highlighting the importance of considering these dependencies in temperature modeling. City-wide AT predictions were generated for Philadelphia demonstrating the ability of the model to improve understanding of local urban climate. 
    more » « less
  2. Abstract

    We compare high‐resolution land‐surface temperature (LST) estimates from the GOES‐16/17 (GOES) satellites to ERA‐5 Land (ERA‐5) reanalysis data across nine large US cities. We quantify the offset and find that ERA‐5 generally overestimates LST compared to GOES by 1.63°C. However, this overestimation is less pronounced in urban areas, underscoring the limitations of ERA‐5 in capturing the LST gradient between urban and non‐urban areas. We then examine three quantities: Surface Urban Heat Island Intensity (SUHII), extreme LST events, and LST exposure by population. We find that ERA‐5 does not accurately represent the diurnal variation and magnitude of SUHII in GOES. Furthermore, while ERA‐5 was on average too warm, ERA‐5 underestimates extreme heat by an average of 2.40°C. Our analysis reveals higher population exposure to high LST in the GOES data set across the cities studied. This discrepancy is especially pronounced when estimating the population fraction that are most exposed to heat.

     
    more » « less
  3. Many cities are experiencing more frequent extreme heat during hot summers. With the rise of global temperature, the thermal comfort in urban areas become even worse. Quantitative information of the spatial distributions of urban heat has become increasingly important for resilience and adaptation to climate change in cities. This study compares satellite-derived land surface temperature (LST) and urban microclimate modeling-based mean radiant temperature (Tmrt) for mapping the urban heat distributions in Philadelphia, Pennsylvania, USA. The LST was estimated based on Landsat 8 thermal imagery with a spatial resolution of around 100 m, while the Tmrt was simulated based on high resolution LiDAR and national aerial imagery program multispectral aerial imageries with a spatial resolution of 1 m. Result shows that both LST and Tmrt show a similar general pattern of the urban heat across the study area, while the Tmrt presents much more details of the heat variations street by street and neighborhood by neighborhood. The LST tends to have a stronger relationship with the Tmrt on building roofs, which are usually not the place for human activities. This studyprovides evidence for choosing more appropriate metrics in urban heat-related studies. 
    more » « less
  4. High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air temperature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing models for mapping the variability in heat exposure in urban environments. We investigated an integrated approach for mapping urban heat hazards by harnessing a diverse set of high-resolution measurements, including both ground-based and satellite-based temperature data. We mounted vehicle-borne mobile sensors on city buses to collect high-frequency temperature data throughout 2018 and 2019. Our research also incorporated key biophysical parameters and Landsat 8 LST data into Random Forest regression modeling to map the hyperlocal variability of heat hazard over areas not covered by the buses. The vehicle-borne temperature sensor data showed large temperature differences within the city, with the largest variations of up to 10 °C and morning-afternoon diurnal changes at a magnitude around 20 °C. Random Forest modeling on noontime (11:30 am – 12:30 pm) data to predict AAT produced accurate results with a mean absolute error of 0.29 °C and successfully showcased the enhanced granularity in urban heat hazard mapping. These maps revealed well-defined hyperlocal variabilities in AAT, which were not evident with other research approaches. Urban core and dense residential areas revealed larger than 5 °C AAT differences from their nearby green spaces. The sensing framework developed in this study can be easily implemented in other urban areas, and findings from this study will be beneficial in understanding the heat vulnerabilities of individual communities. It can be used by the local government to devise targeted hazard mitigation efforts such as increasing green space, developing better heatsafety policies, and exposure warning for workers. 
    more » « less
  5. The urban heat island (UHI) effect, the phenomenon by which cities are warmer than rural surroundings, is increasingly important in a rapidly urbanizing and warming world, but fine-scale differences in temperature within cities are difficult to observe accurately. Networks of air temperature (Tair) sensors rarely offer the spatial density needed to capture neighborhood-level disparities in warming, while satellite measures of land surface temperature (LST) do not reflect the air temperatures that people physically experience. This analysis combines both Tair measurements recorded by a spatially-dense stationary sensor network in Dane County, Wisconsin, and remotely-sensed measurements of LST over the same area—to improve the use and interpretation of LST in UHI studies. The data analyzed span three summer months (June, July, and August) and eight years (2012–2019). Overall, Tair and LST displayed greater agreement in spatial distribution than in magnitude. The relationship between day of the year and correlation was fit to a parabolic curve (R2 = 0.76, p = 0.0002) that peaked in late July. The seasonal evolution in the relationship between Tair and LST, along with particularly high variability in LST across agricultural land cover suggest that plant phenology contributes to a seasonally varying relationship between Tair and LST measurements of the UHI. 
    more » « less