In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section “An empirically based minimal reporting guideline”).
more »
« less
Feasibility of Longitudinal Eye-Gaze Tracking in the Workplace
Eye movements provide a window into cognitive processes, but much of the research harnessing this data has been confined to the laboratory. We address whether eye gaze can be passively, reliably, and privately recorded in real-world environments across extended timeframes using commercial-off-the-shelf (COTS) sensors. We recorded eye gaze data from a COTS tracker embedded in participants (N=20) work environments at pseudorandom intervals across a two-week period. We found that valid samples were recorded approximately 30% of the time despite calibrating the eye tracker only once and without placing any other restrictions on participants. The number of valid samples decreased over days with the degree of decrease dependent on contextual variables (i.e., frequency of video conferencing) and individual difference attributes (e.g., sleep quality and multitasking ability). Participants reported that sensors did not change or impact their work. Our findings suggest the potential for the collection of eye-gaze in authentic environments.
more »
« less
- Award ID(s):
- 1920510
- PAR ID:
- 10349941
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 6
- Issue:
- ETRA
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Evaluating programming proficiency has become more relevant as the demand for coding skills has increased. Current methods, such as questionnaires or interviews, are methods that lack intuition, flexibility, and real-time capabilities. In our work, we investigate eye gaze behavior as an estimate for skill assessment. Specifically, we conducted a study (N=14) using an eye tracker to analyze the participants' abilities to understand source code by presenting them with a series of programs. We evaluated their eye movements based on common eye tracking metrics and identified mutual task-solving strategies among the participants. While we cannot relate these indicators to programming proficiency directly, this study serves as an evaluation of real-time methods for evaluating programming proficiency.more » « less
-
Improved vergence and accommodation via Purkinje Image tracking with multiple cameras for AR glassesnull (Ed.)We present a personalized, comprehensive eye-tracking solution based on tracking higher-order Purkinje images, suited explicitly for eyeglasses-style AR and VR displays. Existing eye-tracking systems for near-eye applications are typically designed to work for an on-axis configuration and rely on pupil center and corneal reflections (PCCR) to estimate gaze with an accuracy of only about 0.5°to 1°. These are often expensive, bulky in form factor, and fail to estimate monocular accommodation, which is crucial for focus adjustment within the AR glasses. Our system independently measures the binocular vergence and monocular accommodation using higher-order Purkinje reflections from the eye, extending the PCCR based methods. We demonstrate that these reflections are sensitive to both gaze rotation and lens accommodation and model the Purkinje images’ behavior in simulation. We also design and fabricate a user-customized eye tracker using cheap off-the-shelf cameras and LEDs. We use an end-to-end convolutional neural network (CNN) for calibrating the eye tracker for the individual user, allowing for robust and simultaneous estimation of vergence and accommodation. Experimental results show that our solution, specifically catering to individual users, outperforms state-of-the-art methods for vergence and depth estimation, achieving an accuracy of 0.3782°and 1.108 cm respectively.more » « less
-
We introduce WebGazer, an online eye tracker that uses common webcams already present in laptops and mobile devices to infer the eye-gaze locations of web visitors on a page in real time. The eye tracking model self-calibrates by watching web visitors interact with the web page and trains a mapping between features of the eye and positions on the screen. This approach aims to provide a natural experience to everyday users that is not restricted to laboratories and highly controlled user studies. WebGazer has two key components: a pupil detector that can be combined with any eye detection library, and a gaze estimator using regression analysis informed by user interactions. We perform a large remote online study and a small in-person study to evaluate WebGazer. The findings show that WebGazer can learn from user interactions and that its accuracy is sufficient for approximating the user's gaze. As part of this paper, we release the first eye tracking library that can be easily integrated in any website for real-time gaze interactions, usability studies, or web research.more » « less
-
Blascheck, Tanja ; Bradshaw, Jessica ; Vrzakova, Hana (Ed.)Virtual Reality (VR) technology has advanced to include eye-tracking, allowing novel research, such as investigating how our visual system coordinates eye movements with changes in perceptual depth. The purpose of this study was to examine whether eye tracking could track perceptual depth changes during a visual discrimination task. We derived two depth-dependent variables from eye tracker data: eye vergence angle (EVA) and interpupillary distance (IPD). As hypothesized, our results revealed that shifting gaze from near-to-far depth significantly decreased EVA and increased IPD, while the opposite pattern was observed while shifting from far-to-near. Importantly, the amount of change in these variables tracked closely with relative changes in perceptual depth, and supported the hypothesis that eye tracker data may be used to infer real-time changes in perceptual depth in VR. Our method could be used as a new tool to adaptively render information based on depth and improve the VR user experience.more » « less