skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From zero to positive entropy
In the sciences in general, the phrase “route to chaos” has come to refer to a metaphor when some physical, biological, economic, or social system transitions from one exhibiting order to one displaying randomness (or chaos). Sometimes the goal is to understand which universal mechanisms explain that transition, and how one can describe systems that operate in a region between order and complete chaos. In other words, the goal is to understand the mathematical processes by which a system evolves from one whose recurrent set is finite towards another one exhibiting chaotic behavior as parameters governing the behavior of the system are varied. This has only been understood for one-dimensional dynamics. The present note exposes new approaches that allow one to move away from those limitations. A tentative global framework toward describing a large class of two-dimensional dynamics, inspired partially by the developments in the one-dimensional theory of interval maps is discussed. More precisely, we present a class of intermediate smooth dynamics between one and higher dimensions. In this setting, it could be possible to develop a similar one-dimensional type approach and in particular to understand the transition from zero entropy to positive entropy.  more » « less
Award ID(s):
1956022
PAR ID:
10349972
Author(s) / Creator(s):
Editor(s):
Daniela De Silva
Date Published:
Journal Name:
Notices of the American Mathematical Society
Volume:
69
Issue:
5
ISSN:
0002-9920
Page Range / eLocation ID:
748-761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In quantum many-body systems, complex dynamics delocalize the physical degrees of freedom. This spreading of information throughout the system has been extensively studied in relation to quantum thermalization, scrambling, and chaos. Locality is typically defined with respect to a tensor product structure (TPS) which identifies the local subsystems of the quantum system. In this paper, we investigate a simple geometric measure of operator spreading by quantifying the distance of the space of local operators from itself evolved under a unitary channel. We show that this TPS distance is related to the scrambling properties of the dynamics between the local subsystems and coincides with the entangling power of the dynamics in the case of a symmetric bipartition. Additionally, we provide sufficient conditions for the maximization of the TPS distance and show that the class of 2-unitaries provides examples of dynamics that achieve this maximal value. For Hamiltonian evolutions at short times, the characteristic timescale of the TPS distance depends on scrambling rates determined by the strength of interactions between the local subsystems. Beyond this short-time regime, the behavior of the TPS distance is explored through numerical simulations of prototypical models exhibiting distinct ergodic properties, ranging from quantum chaos and integrability to Hilbert space fragmentation and localization. 
    more » « less
  2. Abstract Solitons, the distinct balance between nonlinearity and dispersion, provide a route toward ultrafast electromagnetic pulse shaping, high-harmonic generation, real-time image processing, and RF photonic communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs, examining spatial breathers, chaos transitions, and dynamical deterministic switching – in nonlinear measurements and theory. To understand the breather solitons, we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers, with and without chaos initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs, in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion. We present maps of the accessible nonlinear regions, the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths, and the transition between the collective breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and nonlinear modeling. To image these soliton ensembles and their breathers, we further constructed panoramic temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-differential sampling, we present two-dimensional evolution maps of soliton crystal breathers, including with defects, in both stable breathers and breathers with drift. Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes, their spatio-temporal dependences, and their stability-existence zones. 
    more » « less
  3. In compositionally complex materials, there is controversy on the effect of enthalpy versus entropy on the structure and short-range ordering in so-called high-entropy materials. To help address this controversy, we synthesized and probed 40 M4AlC3 layered carbide phases containing 2 to 9 metals and found that short-range ordering from enthalpy is present until the entropy increases enough to achieve complete disordering of the transition metals in their atomic planes. We transformed all these layered carbide phases into two-dimensional (2D) sheets and showed the effects of the order vs. disorder on their surface properties and electronic behavior. This study suggests the key effect that the competition between enthalpy and entropy has on short-range order in multi-compositional materials. 
    more » « less
  4. We investigate the uniform reshuffling model for money exchanges: two agents picked uniformly at random redistribute their dollars between them. This stochastic dynamics is of mean-field type and eventually leads to a exponential distribution of wealth. To better understand this dynamics, we investigate its limit as the number of agents goes to infinity. We prove rigorously the so-called propagation of chaos which links the stochastic dynamics to a (limiting) nonlinear partial differential equation (PDE). This deterministic description, which is well-known in the literature, has a flavor of the classical Boltzmann equation arising from statistical mechanics of dilute gases. We prove its convergence toward its exponential equilibrium distribution in the sense of relative entropy. 
    more » « less
  5. We show that the most important measures of quantum chaos, such as frame potentials, scrambling, Loschmidt echo and out-of-time-order correlators (OTOCs), can be described by the unified framework of the isospectral twirling, namely the Haar average of a k-fold unitary channel. We show that such measures can then always be cast in the form of an expectation value of the isospectral twirling. In literature, quantum chaos is investigated sometimes through the spectrum and some other times through the eigenvectors of the Hamiltonian generating the dynamics. We show that thanks to this technique, we can interpolate smoothly between integrable Hamiltonians and quantum chaotic Hamiltonians. The isospectral twirling of Hamiltonians with eigenvector stabilizer states does not possess chaotic features, unlike those Hamiltonians whose eigenvectors are taken from the Haar measure. As an example, OTOCs obtained with Clifford resources decay to higher values compared with universal resources. By doping Hamiltonians with non-Clifford resources, we show a crossover in the OTOC behavior between a class of integrable models and quantum chaos. Moreover, exploiting random matrix theory, we show that these measures of quantum chaos clearly distinguish the finite time behavior of probes to quantum chaos corresponding to chaotic spectra given by the Gaussian Unitary Ensemble (GUE) from the integrable spectra given by Poisson distribution and the Gaussian Diagonal Ensemble (GDE). 
    more » « less