Historically, physics education primarily consisted of lectures in which students have a largely passive role. Proponents of educational reform have rallied around active learning to increase engagement and retention in STEM fields, particularly advocating peer interactions to build a foundation of deep understanding. However, little is known about how students' prior preparation for introductory courses impacts their mastery of course material when instructors incorporate active learning. In the present study, we examine learning outcomes in two sections of an introductory mechanics course at an institution with a wide range of students' prior mathematics preparation as assessed by quantitative SAT scores. For each of three years, one section was taught using peer instruction in which much of the class time was spent in small-group discussions between students. The other section was taught by the same instructor using interactive lectures in which discussions primarily took place between volunteers from the class and the instructor. We find that students enrolled in the peer instruction sections earned lower grades in the course than did students in the interactive sections. We also find students in the peer instruction sections with lower quantitative SAT scores showed lower gains in understanding foundational concepts as assessed by the Force Concept Inventory and were less likely to earn an A in the course than comparable students in the interactive sections. While further research is needed to confirm these results, this study suggests that peer instruction might not be the optimal pedagogy for heterogeneous populations.
more »
« less
The Differing Impact of a New Assessment Framework on Student Success – The Effect of Socioeconomic Factors
In 2016, Michigan State University developed a new model of classroom education and assessment in their Mechanics of Materials course. This model used a modified mastery approach that stresses formative assessment, guidance in the problem-solving process, and structured student reflection. We now refer to this new approach as SMART Assessment - short for Supported Mastery Assessment using Repeated Testing. The effects of this model have been very positive, and results on overall student success in Mechanics of Materials have been presented in full at prior ASEE conferences. In this paper, we focus on the effects of this new assessment model on the performance of students who may be at greater risk due to their first-generation status or economic disadvantage, while accounting for other measures such as incoming GPA and performance in the prerequisite course, Statics. The evaluation was conducted across 3.5 academic years and involved 1275 students divided among 9 experimental sections and 6 control sections. Statistical analysis indicated that there were no significant differences between the performance indices for students in the SMART sections based on their parents’ history of university education or their eligibility to receive a Pell Grant. While students in the Traditional section tended to have higher grades in ME222, this cannot be compared directly to the grades in the SMART section due to the difference in grading framework. Previous work, however, has indicated that students who complete the SMART framed sections have a deeper understanding of the course material, as demonstrated by their improved performance on common final exam problems that were evaluated with a mastery-focused rubric.
more »
« less
- Award ID(s):
- 2013286
- PAR ID:
- 10350050
- Date Published:
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The literature in engineering education and higher education has examined the implications of course-taking patterns on student development and success. However, little work has analyzed the trajectories of students who need to retake courses in the curriculum, especially those deemed to be fundamental to a student’s program of study, or the sequences of courses. Sequence analysis in R was used to leverage historical transcript data from institutional research at a large, public, land-grant university to visualize student trajectories within the individual courses – with attention to those who re-enrolled in courses – and the pathways students took through a sequence of courses. This investigation considered students enrolled in introductory mechanics courses that are foundational for several engineering majors: Statics, Dynamics, and Strength of Materials (also called Mechanics of Deformable Bodies). This paper presents alluvial diagrams of the course-taking sequences and transition matrices between the different possible grades received upon subsequent attempts for the Mechanics core courses to demonstrate how visualizing students’ paths through sequences of classes by leveraging institutional data can identify patterns that might warrant programs to reconsider their curricular policies.more » « less
-
Student-instructor interactions have an influence on student achievement and perceptions of learning. In college and university settings, large introductory STEM courses are increasingly including Peer-Led Team Learning (PLTL), an evidence-based technique associated with improved student achievement, recruitment, and retention in STEM fields, especially for underserved populations. Within this technique, peer leaders hold a unique position in a student’s education. Peer leaders have relevant experience in that they have had recent success in the courses in which they facilitate student learning, yet, compared to student-faculty or student-teaching assistant relationships, there is minimal imbalance of authority or power. Students might find their peer leaders to be more relatable than faculty or graduate teaching assistants, and may even consider them to be role models. We explored students’ perceptions of peer leader relatability and role model status in relation to students’ achievement and their perceived learning gains in the context of an introductory biology course with an associated PLTL program. The final course grades and self-assessed learning gains of PLTL students who felt they related to their peer leader were compared to those who did not. We also compared final course grades and self-assessed learning gains between PLTL students who viewed their peer leader as a role model versus those who did not. Self-reported learning gains were significantly higher for students who relate to their peer leader, as well as for students who viewed their peer leaders as a role model. There is some support that this trend is stronger for STEM majors versus those who are not enrolled in a STEM program, though the interaction is not significant. Significant differences in overall course grade were only observed between students who reported that they related to their peer leader versus those who did not relate to their peer leader.more » « less
-
Computer-based testing is a powerful tool for scaling exams in large lecture classes. The decision to adopt computer-based testing is typically framed as a tradeoff in terms of time; time saved by auto-grading is reallocated as time spent developing problem pools, but with significant time savings. This paper seeks to examine the tradeoff in terms of accuracy in measuring student understanding. While some exams (e.g., multiple choice) are readily portable to a computer-based format, adequately porting other exam types (e.g., drawings like FBDs or worked problems) can be challenging. A key component of this challenge is to ask “What is the exam actually able to measure?” In this paper the authors will provide a quantitative and qualitative analysis of student understanding measurements via computer-based testing in a sophomore level Solid Mechanics course. At Michigan State University, Solid Mechanics is taught using the SMART methodology. SMART stands for Supported Mastery Assessment through Repeated Testing. In a typical semester, students are given 5 exams that test their understanding of the material. Each exam is graded using the SMART rubric which awards full points for the correct answer, some percentage for non-conceptual errors, and zero points for a solution that has a conceptual error. Every exam is divided into four sections; concept, simple, average, and challenge. Each exam has at least one retake opportunity, for a total of 10 written tests. In the current study, students representing 10% of the class took half of each exam in Prairie Learn, a computer-based auto-grading platform. During this exam, students were given instant feedback on submitted answers (correct or incorrect) and given an opportunity to identify their mistakes and resubmit their work. Students were provided with scratch paper to set up the problem and work out solutions. After the exam, the paper-based work was compared with the computer submitted answers. This paper examines what types of mistakes (conceptual and non-conceptual) students were able to correct when feedback was provided. The answer is dependent on the type and difficulty of the problem. The analysis also examines whether students taking the computer-based test performed at the same level as their peers who took the paper-based exams. Additionally, student feedback is provided and discussed.more » « less
-
Subgoal learning has improved student problem-solving performance in programming, but it has been tested for only one-to-two hours of instruction at a time. Our work pioneers implementing subgoal learning throughout an entire introductory programming course. In this paper we discuss the protocol that we used to identify subgoals for core programming procedures, present the subgoal labels created for the course, and outline the subgoal-labeled instructional materials that were designed for a Java-based course. To examine the effect of subgoal labeled materials on student performance in the course, we compared quiz and exam grades between students who learned using subgoal labels and those who learned using conventional materials. Initial results indicate that learning with subgoals improves performance on early applications of concepts. Moreover, variance in performance was lower and persistence in the course was higher for students who learned with subgoals compared to those who learned with conventional materials, suggesting that learning with subgoal labels may uniquely benefit students who would normally receive low grades or dropout of the course.more » « less
An official website of the United States government

