skip to main content

This content will become publicly available on July 1, 2023

Title: Dynamics of the stream–lake transitional zone affect littoral lake metabolism
Abstract Lake ecosystems, as integrators of watershed and climate stressors, are sentinels of change. However, there is an inherent time-lag between stressors and whole-lake response. Aquatic metabolism, including gross primary production (GPP) and respiration (R), of stream–lake transitional zones may bridge the time-lag of lake response to allochthonous inputs. In this study, we used high-frequency dissolved oxygen data and inverse modeling to estimate daily rates of summer epilimnetic GPP and R in a nutrient-limited oligotrophic lake at two littoral sites located near different major inflows and at a pelagic site. We examined the relative importance of stream variables in comparison to meteorological and in-lake predictors of GPP and R. One of the inflow streams was substantially warmer than the other and primarily entered the lake’s epilimnion, whereas the colder stream primarily mixed into the metalimnion or hypolimnion. Maximum GPP and R rates were 0.2–2.5 mg O 2 L −1  day −1 (9–670%) higher at littoral sites than the pelagic site. Ensemble machine learning analyses revealed that > 30% of variability in daily littoral zone GPP and R was attributable to stream depth and stream–lake transitional zone mixing metrics. The warm-stream inflow likely stimulated littoral GPP and R, while the cold-stream inflow only stimulated more » littoral zone GPP and R when mixing with the epilimnion. The higher GPP and R observed near inflows in our study may provide a sentinel-of-the-sentinel signal, bridging the time-lag between stream inputs and in-lake processing, enabling an earlier indication of whole-lake response to upstream stressors. « less
; ; ; ; ; ;
Award ID(s):
1517823 1753639 1933016 1933102
Publication Date:
Journal Name:
Aquatic Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  2. To increase geospatial awareness about local water resources, our team developed learning resources for the 150 km² Lake Sidney Lanier reservoir located in North Georgia, USA. The reservoir is vital for hydroelectric power generation, recreation, tourism, and consumptive uses. Using geospatial analysis in Google Earth Engine (GEE), we analyzed precipitation trends in the watershed using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data. We also quantified expansion and contraction of reservoir surface area using Landsat-derived Global Surface Water data. As Lake Sidney Lanier is a managed reservoir, surface water extent fluctuations are related to climatic variables, consumptive use, and hydropower generation. Water temperature varies based on seasonality, water depth, water clarity, and lake stratification. Changing temperature dynamics affect ecosystem health and determine other important water quality parameters such as dissolved oxygen concentrations. Landsat 8 Thermal Infrared Sensor (TIRS) data were used to examine temperature trends over multiple years and investigate the timing of lake stratification and mixing. Highly turbid waters are associated with pollutants and lower water quality and can affect ecosystem productivity by minimizing sunlight penetration into the water column. Sentinel 2 MSI data were processed using a turbidity algorithm to analyze temporal trends and spatial correlations withmore »reservoir inflows. Finally, high concentrations of chlorophyll a were used as a proxy to identify harmful algal blooms. The spatial differences in headwaters and near-dam locations were examined and near real-time satellite data were explored for potential development of early-warning systems to protect ecosystem and human health.« less
  3. Many lakes across the world are entering novel states and experiencing altered biogeochemical cycling due to local anthropogenic stressors. In the tropics, understanding the drivers of these changes can be difficult due to a lack of documented historic conditions or an absence of continuous monitoring that can distinguish between intra- and interannual variation. Over the last forty years (1980–2020), Lake Yojoa (Honduras) has experienced increased watershed development as well as the introduction of a large net-pen Tilapia farm, resulting in a dramatic reduction in seasonal water clarity, increased trophic state and altered nutrient dynamics, shifting Lake Yojoa from an oligotrophic (lowproductivity) to mesotrophic (moderate productivity) ecosystem. To assess the changes that have occurred in Lake Yojoa as well as putative drivers for those changes, we compared Secchi depth (water clarity), dissolved inorganic nitrogen (DIN), and total phosphorus (TP) concentrations at continuous semi-monthly intervals for the three years between 1979 and 1983 and again at continuous 16-day intervals for 2018–2020. Between those two periods we observed the loss of a clear water phase that previously occurred in the months when the water column was fully mixed. Seasonal peaks in DIN coincident with mixing suggest that an enhanced accumulation of ammonium inmore »the hypolimnion (the bottom layer of a stratified lake) during stratification, and release to the epilimnion (the top layer of a stratified lake) with mixing maintains high algal abundance and subsequently low Secchi depth during what was previously the clear water phase. This interaction of nutrient loading and Lake Yojoa's monomictic stratification regime illustrates a key phenomenon in how physical water column structure and nutrients interact in tropical monomictic lakes. This work highlights the need to consider nutrient dynamics of warm anoxic hypolimnions, not just surface water nutrient concentrations, to understand environmental change in these societally important but understudied ecosystems.« less
  4. Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic–ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing.more »To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50–60 d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region.« less
  5. Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereasmore »microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47 isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owater in isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.« less