skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Partial, Zombie, and Full Tidal Disruption of Stars by Supermassive Black Holes
Abstract We present long-duration numerical simulations of the tidal disruption of stars modeled with accurate stellar structures and spanning a range of pericenter distances, corresponding to cases where the stars are partially and completely disrupted. We substantiate the prediction that the late-time power-law index of the fallback rate n ∞ ≃ −5/3 for full disruptions, while for partial disruptions—in which the central part of the star survives the tidal encounter intact—we show that n ∞ ≃ −9/4. For the subset of simulations where the pericenter distance is close to that which delineates full from partial disruption, we find that a stellar core can reform after the star has been completely destroyed; for these events the energy of the zombie core is slightly positive, which results in late-time evolution from n ≃ −9/4 to n ≃ −5/3. We find that self-gravity can generate an n ( t ) that deviates from n ∞ by a small but significant amount for several years post-disruption. In one specific case with the stellar pericenter near the critical value, we find that self-gravity also drives the recollapse of the central regions of the debris stream into a collection of several cores while the rest of the stream remains relatively smooth. We also show that it is possible for the surviving stellar core in a partial disruption to acquire a circumstellar disk that is shed from the rapidly rotating core. Finally, we provide a novel analytical fitting function for the fallback rates that may also be useful in a range of contexts beyond tidal disruption events.  more » « less
Award ID(s):
2006684
PAR ID:
10350420
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
168
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tidal disruption events with tidal radius r t and pericenter distance r p are characterized by the quantity β = r t / r p , and “deep encounters” have β ≫ 1. It has been assumed that there is a critical β ≡ β c ∼ 1 that differentiates between partial and full disruption: for β < β c a fraction of the star survives the tidal interaction with the black hole, while for β > β c the star is completely destroyed, and hence all deep encounters should be full. Here we show that this assumption is incorrect by providing an example of a β = 16 encounter between a γ = 5/3, solar-like polytrope and a 10 6 M ⊙ black hole—for which previous investigations have found β c ≃ 0.9—that results in the reformation of a stellar core post-disruption that comprises approximately 25% of the original stellar mass. We propose that the core reforms under self-gravity, which remains important because of the compression of the gas both near pericenter, where the compression occurs out of the orbital plane, and substantially after pericenter, where compression is within the plane. We find that the core forms on a bound orbit about the black hole, and we discuss the corresponding implications of our findings in the context of recently observed, repeating nuclear transients. 
    more » « less
  2. null (Ed.)
    ABSTRACT In dense star clusters, such as globular and open clusters, dynamical interactions between stars and black holes (BHs) can be extremely frequent, leading to various astrophysical transients. Close encounters between a star and a stellar mass BH make it possible for the star to be tidally disrupted by the BH. Due to the relative low mass of the BH and the small cross-section of the tidal disruption event (TDE) for cases with high penetration, disruptions caused by close encounters are usually partial disruptions. The existence of the remnant stellar core and its non-negligible mass compared to the stellar mass BH alters the accretion process significantly. We study this problem with SPH simulations using the code Phantom, with the inclusion of radiation pressure, which is important for small mass BHs. Additionally, we develop a new, more general method of computing the fallback rate which does not rely on any approximation. Our study shows that the powerlaw slope of the fallback rate has a strong dependence on the mass of the BH in the stellar mass BH regime. Furthermore, in this regime, self-gravity of the fallback stream and local instabilities become more significant, and cause the disrupted material to collapse into small clumps before returning to the BH. This results in an abrupt increase of the fallback rate, which can significantly deviate from a powerlaw. Our results will help in the identification of TDEs by stellar mass BHs in dense clusters. 
    more » « less
  3. ABSTRACT A star destroyed by a supermassive black hole (SMBH) in a tidal disruption event (TDE) enables the study of SMBHs. We propose that the distance within which a star is completely destroyed by an SMBH, defined rt,c, is accurately estimated by equating the SMBH tidal field (including numerical factors) to the maximum gravitational field in the star. We demonstrate that this definition accurately reproduces the critical βc = rt/rt,c, where rt = R⋆(M•/M⋆)1/3 is the standard tidal radius with R⋆ and M⋆ the stellar radius and mass, and M• the SMBH mass, for multiple stellar progenitors at various ages, and can be reasonably approximated by βc ≃ [ρc/(4ρ⋆)]1/3, where ρc (ρ⋆) is the central (average) stellar density. We also calculate the peak fallback rate and time at which the fallback rate peaks, finding excellent agreement with hydrodynamical simulations, and also suggest that the partial disruption radius – the distance at which any mass is successfully liberated from the star – is βpartial ≃ 4−1/3 ≃ 0.6. For given stellar and SMBH populations, this model yields, e.g. the fraction of partial TDEs, the peak luminosity distribution of TDEs, and the number of directly captured stars. 
    more » « less
  4. Abstract Upon entering the tidal sphere of a supermassive black hole, a star is ripped apart by tides and transformed into a stream of debris. The ultimate fate of that debris, and the properties of the bright flare that is produced and observed, depends on a number of parameters, including the energy of the center of mass of the original star. Here we present the results of a set of smoothed particle hydrodynamics simulations in which a 1 M ⊙ , γ = 5/3 polytrope is disrupted by a 10 6 M ⊙ supermassive black hole. Each simulation has a pericenter distance of r p = r t (i.e., β ≡ r t / r p = 1 with r t the tidal radius), and we vary the eccentricity e of the stellar orbit from e = 0.8 up to e = 1.20 and study the nature of the fallback of debris onto the black hole and the long-term fate of the unbound material. For simulations with eccentricities e ≲ 0.98, the fallback curve has a distinct, three-peak structure that is induced by self-gravity. For simulations with eccentricities e ≳ 1.06, the core of the disrupted star reforms following its initial disruption. Our results have implications for, e.g., tidal disruption events produced by supermassive black hole binaries. 
    more » « less
  5. Abstract Close encounters between neutron stars and main-sequence stars occur in globular clusters and may lead to various outcomes. Here we study encounters resulting in the tidal disruption of the star. Using N -body models, we predict the typical stellar masses in these disruptions and the dependence of the event rate on the host cluster properties. We find that tidal disruption events occur most frequently in core-collapsed globular clusters and that roughly 25% of the disrupted stars are merger products (i.e., blue straggler stars). Using hydrodynamic simulations, we model the tidal disruptions themselves (over timescales of days) to determine the mass bound to the neutron star and the properties of the accretion disks formed. In general, we find roughly 80%–90% of the initial stellar mass becomes bound to the neutron star following disruption. Additionally, we find that neutron stars receive impulsive kicks of up to about 20 km s −1 as a result of the asymmetry of unbound ejecta; these kicks place these neutron stars on elongated orbits within their host cluster, with apocenter distances well outside the cluster core. Finally, we model the evolution of the (hypercritical) accretion disks on longer timescales (days to years after disruption) to estimate the accretion rate onto the neutron stars and accompanying spin-up. As long as ≳1% of the bound mass accretes onto the neutron star, millisecond spin periods can be attained. We argue the growing numbers of isolated millisecond pulsars observed in globular clusters may have formed, at least in part, through this mechanism. In the case of significant mass growth, some of these neutron stars may collapse to form low-mass (≲3 M ⊙ ) black holes. 
    more » « less