Synthesis Mechanisms, Structural Models, and Photothermal Therapy Applications of Top-Down Carbon Dots from Carbon Powder, Graphite, Graphene, and Carbon Nanotubes
                        
                    
    
            In this study, top-down syntheses of carbon dots (CDs) from four different carbon precursors, namely, carbon nano powders, graphite, graphene, and carbon nanotubes, were carried out. Systematic study demonstrated that the optical properties and surface functionalities of the CDs were quite similar and mainly influenced by the synthesis method, while the sizes, morphologies, chemical compositions, and core structures of the CDs were heavily influenced by the carbon precursors. On the basis of these studies, the formation processes and structural models of these four top-down CDs were proposed. The cell cytotoxicity and photothermal conversion efficiency of these CDs were also carefully evaluated, demonstrating their potential applications in photothermal therapy. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2041413
- PAR ID:
- 10350462
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 23
- Issue:
- 3
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 1456
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Lim, Teik-Thye; Vilar, Vítor (Ed.)The detection and removal of Atrazine (ATZN), a pesticide of environmental concern, requires more efficient methods to facilitate its degradation. The adequate structural morphology, high specific surface area, great photothermal conversion performance, higher amount of oxygenated functional groups, and intense and stable fluorescence signals are considered as favorable properties of the materials used in the in the proposal of physicochemical methods for detection, capture and degradation of nitrogenous herbicides. Herein, the design, preparation, and characterization of MnFe2O4@CDs as a dual-functional material is reported. Due to its optical, photothermal, textural and surface chemistry properties, the material is able to capture, detect, and degrade the herbicide "Atrazine" in synthetic samples. The preparation of the proposed composites, formed by particles of bimetallic oxides (Mn-Fe2O4) and a covering of carbon dots (CDs), was confirmed using various characterization techniques including SEM, TEMHR, RAMAN, FTIR, UV-Visible, Photoluminescence, DRX, N2 adsorption-desorption isotherms, superficial chemistry, and photothermal. The study revealed that the ATZN capture occurs through hydrogen bonding interaction between −COOH and −COH functional groups exposed on CDs surface and amine groups −NH− of the herbicide. Furthermore, the CDs behave as fluorescent markers of single-channel employed to detect ATZN and to monitor the capture-degradation process. The MnFe2O4@CDs composite was integrated as the main thermoactive material into a photothermal reactor on which was incident a NIR laser. The high near-infrared absorption of the Mn-Fe2O4 particles resulting in an efficient photothermal conversion; which in turn, increase the temperature of the surrounding medium. The increase in temperature promotes the activation of persulfate (PS) at the interface of the MnFe2O4@CDs−PS system producing SO4• − radicals as oxidizing agents of atrazine. Our results demonstrate that the process may effectively degrade 99 % of atrazine for a concentration of CATZN [20 mM], when NIR light irradiated by 45 min and the system reaches a temperature of ca. 53 ºC. Additionally, the degradation of ATZN was confirmed by analysis of total organic carbon (TOC). The fluorometric analytical assay by CDs-base fluorescence probes allowed following the FL signal at 520 nm(λexit = 375 nm) for the capture “turn on” and degradation “turn off” of atrazine. Finally, as a comparison, we highlight the significant efficiency shown by the process studied here, compared to other similar atrazine degradation processes previously reported.more » « less
- 
            In this study, carbon dots are synthesized hydrothermally from loblolly pine using top-down and bottom-up processes. The bottom-up process dialyzed carbon dots from hydrothermally treated process liquid. Meanwhile, hydrochar was oxidized into carbon dots in the top-down method. Carbon dots from top-down and bottom-up processes were compared for their yield, size, functionality, and quantum properties. Furthermore, hydrothermal treatment temperature and residence time were evaluated on the aforementioned properties of carbon dots. The results indicate that the top-down method yields higher carbon dots than bottom-up in any given hydrothermal treatment temperature and residence time. The size of the carbon dots decreases with the increase in reaction time; however, the size remains similar with the increase in hydrothermal treatment temperature. Regarding quantum yield, the carbon dots from the top-down method exhibit higher quantum yields than bottom-up carbon dots where the quantum yield reaches as high as 48%. The only exception of the bottom-up method is the carbon dots prepared at a high hydrothermal treatment temperature (i.e., 260 °C), where relatively higher quantum yield (up to 18.1%) was observed for the shorter reaction time. Overall, this study reveals that the properties of lignocellulosic biomass-derived carbon dots differ with the synthesis process as well as the processing parameters.more » « less
- 
            Carbon dots (CDs) are emerging as the material of choice in a range of applications due to their excellent photoluminescence properties, ease of preparation from inexpensive precursors, and low toxicity. However, the precise nature of the mechanism for the fluorescence is still under debate, and several molecular fluorophores have been reported. In this work, a new blue fluorophore, 5-oxopyrrolidine-3-carboxylic acid, was discovered in carbon dots synthesized from the most commonly used precursors: citric acid and urea. The molecular product alone has demonstrated interesting aggregation-enhanced emission (AEE), making it unique compared to other fluorophores known to be generated in CDs. We propose that this molecular fluorophore is associated with a polymer backbone within the CDs, and its fluorescence behavior is largely dependent on intermolecular interactions with the polymers or other fluorophores. Thus, a new class of non-traditional fluorophores is now relevant to the consideration of the CD fluorescence mechanism, providing both an additional challenge to the community in resolving the mechanism and an opportunity for a greater range of CD design schemes and applications.more » « less
- 
            Abstract Peatlands are the most efficient natural ecosystems for long‐term storage of atmospheric carbon. Our understanding of peatland carbon cycling is based entirely on bottom‐up controls regulated by low nutrient availability. Recent studies have shown that top‐down controls through predator‐prey dynamics can influence ecosystem function, yet this has not been evaluated in peatlands to date. Here, we used a combination of nutrient enrichment and trophic‐level manipulation to test the hypothesis that interactions between nutrient availability (bottom‐up) and predation (top‐down) influence peatland carbon fluxes. Elevated nutrients stimulated bacterial biomass and organic matter decomposition. In the absence of top‐down regulation, carbon dioxide (CO2) respiration driven by greater decomposition was offset by elevated algal productivity. Herbivores accelerated CO2emissions by removing algal biomass, while predators indirectly reduced CO2emissions by muting herbivory in a trophic cascade. This study demonstrates that trophic interactions can mitigate CO2emissions associated with elevated nutrient levels in northern peatlands.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    