skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Circumstellar Medium Constraints on the Environment of Two Nearby Type Ia Supernovae: SN 2017cbv and SN 2020nlb
Abstract We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.  more » « less
Award ID(s):
2008108 1813466 1911225 1911151 1907790
PAR ID:
10350732
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present X-ray and radio observations of what may be the closest Type Iax supernova (SN) to date, SN 2014dt (d = 12.3–19.3 Mpc), and provide tight constraints on the radio and X-ray emission. We infer a specific radio luminosity $$L_R\lt (1.0\!-\!2.4)\times 10^{25}\, \rm {erg\, s^{-1}\, Hz^{-1}}$$ at a frequency of 7.5 GHz and a X-ray luminosity $$L_X\lt 1.4\times 10^{38}\, \rm {erg\, s^{-1}}$$ (0.3–10 keV) at ∼38–48 d post-explosion. We interpret these limits in the context of Inverse Compton (IC) emission and synchrotron emission from a population of electrons accelerated at the forward shock of the explosion in a power-law distribution $$N_e(\gamma _e)\propto \gamma _e^{-p}$$ with p = 3. Our analysis constrains the progenitor system mass-loss rate to be $$\dot{M}\lt 5.0 \times 10^{-6} \rm {M_{\odot }\, yr^{-1}}$$ at distances $$r\lesssim 10^{16}\, \rm {cm}$$ for an assumed wind velocity $$v_w=100\, \rm {km\, s^{-1}}$$, and a fraction of post-shock energy into magnetic fields and relativistic electrons of ϵB = 0.01 and ϵe = 0.1, respectively. This result rules out some of the parameter space of symbiotic giant star companions, and it is consistent with the low mass-loss rates expected from He-star companions. Our calculations also show that the improved sensitivity of the next-generation Very Large Array (ngVLA) is needed to probe the very low-density media characteristic of He stars that are the leading model for binary stellar companions of white dwarfs giving origin to Type Iax SNe. 
    more » « less
  2. Abstract We present 1.3 mm (230 GHz) observations of the recent and nearby Type II supernova, SN 2023ixf, obtained with the Submillimeter Array (SMA) at 2.6–18.6 days after explosion. The observations were obtained as part the SMA Large Program, POETS (Pursuit of Extragalactic Transients with the SMA). We do not detect any emission at the location of SN 2023ixf, with the deepest limits of L ν (230 GHz) ≲ 8.6 × 10 25 erg s −1 Hz −1 at 2.7 and 7.7 days, and L ν (230 GHz) ≲ 3.4 × 10 25 erg s −1 Hz −1 at 18.6 days. These limits are about a factor of 2 times dimmer than the millimeter emission from SN 2011dh (IIb), about 1 order of magnitude dimmer compared to SN 1993J (IIb) and SN 2018ivc (IIL), and about 30 times dimmer than the most luminous nonrelativistic SNe in the millimeter band (Type IIb/Ib/Ic). Using these limits in the context of analytical models that include synchrotron self-absorption and free–free absorption, we place constraints on the proximate circumstellar medium around the progenitor star, to a scale of ∼2 × 10 15 cm, excluding the range M ̇ ∼ few × 10 − 6 − 10 − 2 M ⊙ yr −1 (for a wind velocity, v w = 115 km s −1 , and ejecta velocity, v ej ∼ (1 − 2) × 10 4 km s −1 ). These results are consistent with an inference of the mass-loss rate based on optical spectroscopy (∼2 × 10 −2 M ⊙ yr −1 for v w = 115 km s −1 ), but are in tension with the inference from hard X-rays (∼7 × 10 −4 M ⊙ yr −1 for v w = 115 km s −1 ). This tension may be alleviated by a nonhomogeneous and confined CSM, consistent with results from high-resolution optical spectroscopy. 
    more » « less
  3. Abstract Type Ibn supernovae (SNe Ibn) are rare stellar explosions powered primarily by interaction between the SN ejecta and H-poor, He-rich material lost by their progenitor stars. Multiwavelength observations, particularly in the X-rays, of SNe Ibn constrain their poorly understood progenitor channels and mass-loss mechanisms. Here we present Swift X-ray, ultraviolet, and ground-based optical observations of the Type Ibn SN 2022ablq, only the second SN Ibn with X-ray detections to date. While similar to the prototypical Type Ibn SN 2006jc in the optical, SN 2022ablq is roughly an order of magnitude more luminous in the X-rays, reaching unabsorbed luminositiesLX∼ 4 × 1040erg s−1between 0.2–10 keV. From these X-ray observations we infer time-varying mass-loss rates between 0.05 and 0.5Myr−1peaking 0.5–2 yr before explosion. This complex mass-loss history and circumstellar environment disfavor steady-state winds as the primary progenitor mass-loss mechanism. We also search for precursor emission from alternative mass-loss mechanisms, such as eruptive outbursts, in forced photometry during the 2 yr before explosion. We find no statistically significant detections brighter thanM≈ −14—too shallow to rule out precursor events similar to those observed for other SNe Ibn. Finally, numerical models of the explosion of an ∼15Mhelium star that undergoes an eruptive outburst ≈1.8 yr before explosion are consistent with the observed bolometric light curve. We conclude that our observations disfavor a Wolf–Rayet star progenitor losing He-rich material via stellar winds and instead favor lower-mass progenitor models, including Roche-lobe overflow in helium stars with compact binary companions or stars that undergo eruptive outbursts during late-stage nucleosynthesis stages. 
    more » « less
  4. Abstract We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission ( L x = 5 × 10 41 erg s −1 ) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 10 14 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10 −3 M ⊙ and density n = (1−4) × 10 10 cm −3 . Radio nondetections indicate a low-density environment at larger radii ( r > 10 16 cm) and mass-loss rate of M ̇ < 10 − 4 M ⊙ yr −1 . SCE modeling of both primary light-curve peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M ⊙ and radius R e = 30−230 R ⊙ . The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers. 
    more » « less
  5. Abstract We present NuSTAR observations of the nearby SN 2023ixf in M101 ( d = 6.9 Mpc) that provide the earliest hard X-ray detection of a nonrelativistic stellar explosion to date at δ t ≈ 4 days and δ t ≈ 11 days. The spectra are well described by a hot thermal bremsstrahlung continuum with T > 25 keV shining through a thick neutral medium with a neutral hydrogen column that decreases with time (initial N Hint = 2.6 × 10 23 cm −2 ). A prominent neutral Fe K α emission line is clearly detected, similar to other strongly interacting supernovae (SNe) such as SN 2010jl. The rapidly decreasing intrinsic absorption with time suggests the presence of a dense but confined circumstellar medium (CSM). The absorbed broadband X-ray luminosity (0.3–79 keV) is L X ≈ 2.5 × 10 40 erg s −1 during both epochs, with the increase in overall X-ray flux related to the decrease in the absorbing column. Interpreting these observations in the context of thermal bremsstrahlung radiation originating from the interaction of the SN shock with a dense medium we infer large particle densities in excess of n CSM ≈ 4 × 10 8 cm −3 at r < 10 15 cm, corresponding to an enhanced progenitor mass-loss rate of M ̇ ≈ 3 × 10 − 4 M ⊙ yr −1 for an assumed wind velocity of v w = 50 km s −1 . 
    more » « less